Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
Assertion | mrcssv | |- ( C e. ( Moore ` X ) -> ( F ` U ) C_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
2 | fvssunirn | |- ( F ` U ) C_ U. ran F |
|
3 | 1 | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
4 | frn | |- ( F : ~P X --> C -> ran F C_ C ) |
|
5 | uniss | |- ( ran F C_ C -> U. ran F C_ U. C ) |
|
6 | 3 4 5 | 3syl | |- ( C e. ( Moore ` X ) -> U. ran F C_ U. C ) |
7 | mreuni | |- ( C e. ( Moore ` X ) -> U. C = X ) |
|
8 | 6 7 | sseqtrd | |- ( C e. ( Moore ` X ) -> U. ran F C_ X ) |
9 | 2 8 | sstrid | |- ( C e. ( Moore ` X ) -> ( F ` U ) C_ X ) |