Metamath Proof Explorer


Theorem mrcssv

Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrcssv
|- ( C e. ( Moore ` X ) -> ( F ` U ) C_ X )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 fvssunirn
 |-  ( F ` U ) C_ U. ran F
3 1 mrcf
 |-  ( C e. ( Moore ` X ) -> F : ~P X --> C )
4 frn
 |-  ( F : ~P X --> C -> ran F C_ C )
5 uniss
 |-  ( ran F C_ C -> U. ran F C_ U. C )
6 3 4 5 3syl
 |-  ( C e. ( Moore ` X ) -> U. ran F C_ U. C )
7 mreuni
 |-  ( C e. ( Moore ` X ) -> U. C = X )
8 6 7 sseqtrd
 |-  ( C e. ( Moore ` X ) -> U. ran F C_ X )
9 2 8 sstrid
 |-  ( C e. ( Moore ` X ) -> ( F ` U ) C_ X )