Description: The Moore closure of a set is a subset of the base. Deduction form of mrcssv . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrcssd.1 | |- ( ph -> A e. ( Moore ` X ) )  | 
					|
| mrcssd.2 | |- N = ( mrCls ` A )  | 
					||
| Assertion | mrcssvd | |- ( ph -> ( N ` B ) C_ X )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mrcssd.1 | |- ( ph -> A e. ( Moore ` X ) )  | 
						|
| 2 | mrcssd.2 | |- N = ( mrCls ` A )  | 
						|
| 3 | 2 | mrcssv | |- ( A e. ( Moore ` X ) -> ( N ` B ) C_ X )  | 
						
| 4 | 1 3 | syl | |- ( ph -> ( N ` B ) C_ X )  |