Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
2 |
|
simp1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> C e. ( Moore ` X ) ) |
3 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
4 |
|
elpw2g |
|- ( X e. C -> ( U e. ~P X <-> U C_ X ) ) |
5 |
3 4
|
syl |
|- ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) ) |
6 |
5
|
biimpar |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X ) |
7 |
6
|
3adant3 |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U e. ~P X ) |
8 |
|
elpw2g |
|- ( X e. C -> ( V e. ~P X <-> V C_ X ) ) |
9 |
3 8
|
syl |
|- ( C e. ( Moore ` X ) -> ( V e. ~P X <-> V C_ X ) ) |
10 |
9
|
biimpar |
|- ( ( C e. ( Moore ` X ) /\ V C_ X ) -> V e. ~P X ) |
11 |
10
|
3adant2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> V e. ~P X ) |
12 |
7 11
|
prssd |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> { U , V } C_ ~P X ) |
13 |
1
|
mrcuni |
|- ( ( C e. ( Moore ` X ) /\ { U , V } C_ ~P X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) |
14 |
2 12 13
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) |
15 |
|
uniprg |
|- ( ( U e. ~P X /\ V e. ~P X ) -> U. { U , V } = ( U u. V ) ) |
16 |
7 11 15
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. { U , V } = ( U u. V ) ) |
17 |
16
|
fveq2d |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` ( U u. V ) ) ) |
18 |
1
|
mrcf |
|- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
19 |
18
|
ffnd |
|- ( C e. ( Moore ` X ) -> F Fn ~P X ) |
20 |
19
|
3ad2ant1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> F Fn ~P X ) |
21 |
|
fnimapr |
|- ( ( F Fn ~P X /\ U e. ~P X /\ V e. ~P X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) |
22 |
20 7 11 21
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) |
23 |
22
|
unieqd |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = U. { ( F ` U ) , ( F ` V ) } ) |
24 |
|
fvex |
|- ( F ` U ) e. _V |
25 |
|
fvex |
|- ( F ` V ) e. _V |
26 |
24 25
|
unipr |
|- U. { ( F ` U ) , ( F ` V ) } = ( ( F ` U ) u. ( F ` V ) ) |
27 |
23 26
|
eqtrdi |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = ( ( F ` U ) u. ( F ` V ) ) ) |
28 |
27
|
fveq2d |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. ( F " { U , V } ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |
29 |
14 17 28
|
3eqtr3d |
|- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` ( U u. V ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |