| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrcfval.f |  |-  F = ( mrCls ` C ) | 
						
							| 2 |  | simp1 |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> C e. ( Moore ` X ) ) | 
						
							| 3 |  | mre1cl |  |-  ( C e. ( Moore ` X ) -> X e. C ) | 
						
							| 4 |  | elpw2g |  |-  ( X e. C -> ( U e. ~P X <-> U C_ X ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) ) | 
						
							| 6 | 5 | biimpar |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U e. ~P X ) | 
						
							| 8 |  | elpw2g |  |-  ( X e. C -> ( V e. ~P X <-> V C_ X ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( C e. ( Moore ` X ) -> ( V e. ~P X <-> V C_ X ) ) | 
						
							| 10 | 9 | biimpar |  |-  ( ( C e. ( Moore ` X ) /\ V C_ X ) -> V e. ~P X ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> V e. ~P X ) | 
						
							| 12 | 7 11 | prssd |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> { U , V } C_ ~P X ) | 
						
							| 13 | 1 | mrcuni |  |-  ( ( C e. ( Moore ` X ) /\ { U , V } C_ ~P X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) | 
						
							| 14 | 2 12 13 | syl2anc |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) | 
						
							| 15 |  | uniprg |  |-  ( ( U e. ~P X /\ V e. ~P X ) -> U. { U , V } = ( U u. V ) ) | 
						
							| 16 | 7 11 15 | syl2anc |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. { U , V } = ( U u. V ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` ( U u. V ) ) ) | 
						
							| 18 | 1 | mrcf |  |-  ( C e. ( Moore ` X ) -> F : ~P X --> C ) | 
						
							| 19 | 18 | ffnd |  |-  ( C e. ( Moore ` X ) -> F Fn ~P X ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> F Fn ~P X ) | 
						
							| 21 |  | fnimapr |  |-  ( ( F Fn ~P X /\ U e. ~P X /\ V e. ~P X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) | 
						
							| 22 | 20 7 11 21 | syl3anc |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) | 
						
							| 23 | 22 | unieqd |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = U. { ( F ` U ) , ( F ` V ) } ) | 
						
							| 24 |  | fvex |  |-  ( F ` U ) e. _V | 
						
							| 25 |  | fvex |  |-  ( F ` V ) e. _V | 
						
							| 26 | 24 25 | unipr |  |-  U. { ( F ` U ) , ( F ` V ) } = ( ( F ` U ) u. ( F ` V ) ) | 
						
							| 27 | 23 26 | eqtrdi |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = ( ( F ` U ) u. ( F ` V ) ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. ( F " { U , V } ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) | 
						
							| 29 | 14 17 28 | 3eqtr3d |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` ( U u. V ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |