Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
2 |
|
simpl |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> C e. ( Moore ` X ) ) |
3 |
|
simpll |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> C e. ( Moore ` X ) ) |
4 |
|
ssel2 |
|- ( ( U C_ ~P X /\ s e. U ) -> s e. ~P X ) |
5 |
4
|
elpwid |
|- ( ( U C_ ~P X /\ s e. U ) -> s C_ X ) |
6 |
5
|
adantll |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ X ) |
7 |
1
|
mrcssid |
|- ( ( C e. ( Moore ` X ) /\ s C_ X ) -> s C_ ( F ` s ) ) |
8 |
3 6 7
|
syl2anc |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ ( F ` s ) ) |
9 |
1
|
mrcf |
|- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
10 |
9
|
ffund |
|- ( C e. ( Moore ` X ) -> Fun F ) |
11 |
10
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> Fun F ) |
12 |
9
|
fdmd |
|- ( C e. ( Moore ` X ) -> dom F = ~P X ) |
13 |
12
|
sseq2d |
|- ( C e. ( Moore ` X ) -> ( U C_ dom F <-> U C_ ~P X ) ) |
14 |
13
|
biimpar |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U C_ dom F ) |
15 |
|
funfvima2 |
|- ( ( Fun F /\ U C_ dom F ) -> ( s e. U -> ( F ` s ) e. ( F " U ) ) ) |
16 |
11 14 15
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( s e. U -> ( F ` s ) e. ( F " U ) ) ) |
17 |
16
|
imp |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> ( F ` s ) e. ( F " U ) ) |
18 |
|
elssuni |
|- ( ( F ` s ) e. ( F " U ) -> ( F ` s ) C_ U. ( F " U ) ) |
19 |
17 18
|
syl |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> ( F ` s ) C_ U. ( F " U ) ) |
20 |
8 19
|
sstrd |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ U. ( F " U ) ) |
21 |
20
|
ralrimiva |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. U s C_ U. ( F " U ) ) |
22 |
|
unissb |
|- ( U. U C_ U. ( F " U ) <-> A. s e. U s C_ U. ( F " U ) ) |
23 |
21 22
|
sylibr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. U C_ U. ( F " U ) ) |
24 |
1
|
mrcssv |
|- ( C e. ( Moore ` X ) -> ( F ` x ) C_ X ) |
25 |
24
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` x ) C_ X ) |
26 |
25
|
ralrimivw |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. x e. U ( F ` x ) C_ X ) |
27 |
9
|
ffnd |
|- ( C e. ( Moore ` X ) -> F Fn ~P X ) |
28 |
|
sseq1 |
|- ( s = ( F ` x ) -> ( s C_ X <-> ( F ` x ) C_ X ) ) |
29 |
28
|
ralima |
|- ( ( F Fn ~P X /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ X <-> A. x e. U ( F ` x ) C_ X ) ) |
30 |
27 29
|
sylan |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ X <-> A. x e. U ( F ` x ) C_ X ) ) |
31 |
26 30
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. ( F " U ) s C_ X ) |
32 |
|
unissb |
|- ( U. ( F " U ) C_ X <-> A. s e. ( F " U ) s C_ X ) |
33 |
31 32
|
sylibr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. ( F " U ) C_ X ) |
34 |
1
|
mrcss |
|- ( ( C e. ( Moore ` X ) /\ U. U C_ U. ( F " U ) /\ U. ( F " U ) C_ X ) -> ( F ` U. U ) C_ ( F ` U. ( F " U ) ) ) |
35 |
2 23 33 34
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) C_ ( F ` U. ( F " U ) ) ) |
36 |
|
simpll |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
37 |
|
elssuni |
|- ( x e. U -> x C_ U. U ) |
38 |
37
|
adantl |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> x C_ U. U ) |
39 |
|
sspwuni |
|- ( U C_ ~P X <-> U. U C_ X ) |
40 |
39
|
biimpi |
|- ( U C_ ~P X -> U. U C_ X ) |
41 |
40
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. U C_ X ) |
42 |
41
|
adantr |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> U. U C_ X ) |
43 |
1
|
mrcss |
|- ( ( C e. ( Moore ` X ) /\ x C_ U. U /\ U. U C_ X ) -> ( F ` x ) C_ ( F ` U. U ) ) |
44 |
36 38 42 43
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> ( F ` x ) C_ ( F ` U. U ) ) |
45 |
44
|
ralrimiva |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) |
46 |
|
sseq1 |
|- ( s = ( F ` x ) -> ( s C_ ( F ` U. U ) <-> ( F ` x ) C_ ( F ` U. U ) ) ) |
47 |
46
|
ralima |
|- ( ( F Fn ~P X /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ ( F ` U. U ) <-> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) ) |
48 |
27 47
|
sylan |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ ( F ` U. U ) <-> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) ) |
49 |
45 48
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. ( F " U ) s C_ ( F ` U. U ) ) |
50 |
|
unissb |
|- ( U. ( F " U ) C_ ( F ` U. U ) <-> A. s e. ( F " U ) s C_ ( F ` U. U ) ) |
51 |
49 50
|
sylibr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. ( F " U ) C_ ( F ` U. U ) ) |
52 |
1
|
mrcssv |
|- ( C e. ( Moore ` X ) -> ( F ` U. U ) C_ X ) |
53 |
52
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) C_ X ) |
54 |
1
|
mrcss |
|- ( ( C e. ( Moore ` X ) /\ U. ( F " U ) C_ ( F ` U. U ) /\ ( F ` U. U ) C_ X ) -> ( F ` U. ( F " U ) ) C_ ( F ` ( F ` U. U ) ) ) |
55 |
2 51 53 54
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. ( F " U ) ) C_ ( F ` ( F ` U. U ) ) ) |
56 |
1
|
mrcidm |
|- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` ( F ` U. U ) ) = ( F ` U. U ) ) |
57 |
2 41 56
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` ( F ` U. U ) ) = ( F ` U. U ) ) |
58 |
55 57
|
sseqtrd |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. ( F " U ) ) C_ ( F ` U. U ) ) |
59 |
35 58
|
eqssd |
|- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) = ( F ` U. ( F " U ) ) ) |