| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = X -> ( ACS ` x ) = ( ACS ` X ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pweq | 
							 |-  ( x = X -> ~P x = ~P X )  | 
						
						
							| 3 | 
							
								2
							 | 
							fveq2d | 
							 |-  ( x = X -> ( Moore ` ~P x ) = ( Moore ` ~P X ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							eleq12d | 
							 |-  ( x = X -> ( ( ACS ` x ) e. ( Moore ` ~P x ) <-> ( ACS ` X ) e. ( Moore ` ~P X ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							acsmre | 
							 |-  ( a e. ( ACS ` x ) -> a e. ( Moore ` x ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mresspw | 
							 |-  ( a e. ( Moore ` x ) -> a C_ ~P x )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( a e. ( ACS ` x ) -> a C_ ~P x )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							elpwd | 
							 |-  ( a e. ( ACS ` x ) -> a e. ~P ~P x )  | 
						
						
							| 9 | 
							
								8
							 | 
							ssriv | 
							 |-  ( ACS ` x ) C_ ~P ~P x  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( T. -> ( ACS ` x ) C_ ~P ~P x )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 12 | 
							
								
							 | 
							mremre | 
							 |-  ( x e. _V -> ( Moore ` x ) e. ( Moore ` ~P x ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mp1i | 
							 |-  ( a C_ ( ACS ` x ) -> ( Moore ` x ) e. ( Moore ` ~P x ) )  | 
						
						
							| 14 | 
							
								5
							 | 
							ssriv | 
							 |-  ( ACS ` x ) C_ ( Moore ` x )  | 
						
						
							| 15 | 
							
								
							 | 
							sstr | 
							 |-  ( ( a C_ ( ACS ` x ) /\ ( ACS ` x ) C_ ( Moore ` x ) ) -> a C_ ( Moore ` x ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpan2 | 
							 |-  ( a C_ ( ACS ` x ) -> a C_ ( Moore ` x ) )  | 
						
						
							| 17 | 
							
								
							 | 
							mrerintcl | 
							 |-  ( ( ( Moore ` x ) e. ( Moore ` ~P x ) /\ a C_ ( Moore ` x ) ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) )  | 
						
						
							| 18 | 
							
								13 16 17
							 | 
							syl2anc | 
							 |-  ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( Moore ` x ) )  | 
						
						
							| 19 | 
							
								
							 | 
							ssel2 | 
							 |-  ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( ACS ` x ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							acsmred | 
							 |-  ( ( a C_ ( ACS ` x ) /\ d e. a ) -> d e. ( Moore ` x ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` d ) = ( mrCls ` d )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							mrcssvd | 
							 |-  ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 23 | 
							
								22
							 | 
							ralrimiva | 
							 |-  ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> A. d e. a ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 25 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ d e. a ( ( mrCls ` d ) ` c ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sylibr | 
							 |-  ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 27 | 
							
								11
							 | 
							elpw2 | 
							 |-  ( U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x <-> U_ d e. a ( ( mrCls ` d ) ` c ) C_ x )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylibr | 
							 |-  ( ( a C_ ( ACS ` x ) /\ c e. ~P x ) -> U_ d e. a ( ( mrCls ` d ) ` c ) e. ~P x )  | 
						
						
							| 29 | 
							
								28
							 | 
							fmpttd | 
							 |-  ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x )  | 
						
						
							| 30 | 
							
								
							 | 
							fssxp | 
							 |-  ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							 |-  ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) )  | 
						
						
							| 32 | 
							
								
							 | 
							vpwex | 
							 |-  ~P x e. _V  | 
						
						
							| 33 | 
							
								32 32
							 | 
							xpex | 
							 |-  ( ~P x X. ~P x ) e. _V  | 
						
						
							| 34 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) C_ ( ~P x X. ~P x ) /\ ( ~P x X. ~P x ) e. _V ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V )  | 
						
						
							| 35 | 
							
								31 33 34
							 | 
							sylancl | 
							 |-  ( a C_ ( ACS ` x ) -> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) e. _V )  | 
						
						
							| 36 | 
							
								19
							 | 
							adantlr | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> d e. ( ACS ` x ) )  | 
						
						
							| 37 | 
							
								
							 | 
							elpwi | 
							 |-  ( b e. ~P x -> b C_ x )  | 
						
						
							| 38 | 
							
								37
							 | 
							ad2antlr | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> b C_ x )  | 
						
						
							| 39 | 
							
								21
							 | 
							acsfiel2 | 
							 |-  ( ( d e. ( ACS ` x ) /\ b C_ x ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 40 | 
							
								36 38 39
							 | 
							syl2anc | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ d e. a ) -> ( b e. d <-> A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							ralbidva | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 42 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ b )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralbii | 
							 |-  ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b )  | 
						
						
							| 44 | 
							
								
							 | 
							ralcom | 
							 |-  ( A. e e. ( ~P b i^i Fin ) A. d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							bitri | 
							 |-  ( A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b <-> A. d e. a A. e e. ( ~P b i^i Fin ) ( ( mrCls ` d ) ` e ) C_ b )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							bitr4di | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. d e. a b e. d <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 47 | 
							
								
							 | 
							elrint2 | 
							 |-  ( b e. ~P x -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantl | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> A. d e. a b e. d ) )  | 
						
						
							| 49 | 
							
								
							 | 
							funmpt | 
							 |-  Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) )  | 
						
						
							| 50 | 
							
								
							 | 
							funiunfv | 
							 |-  ( Fun ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							ax-mp | 
							 |-  U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							sseq1i | 
							 |-  ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b )  | 
						
						
							| 53 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							 |-  ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) )  | 
						
						
							| 55 | 
							
								
							 | 
							fveq2 | 
							 |-  ( c = e -> ( ( mrCls ` d ) ` c ) = ( ( mrCls ` d ) ` e ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							iuneq2d | 
							 |-  ( c = e -> U_ d e. a ( ( mrCls ` d ) ` c ) = U_ d e. a ( ( mrCls ` d ) ` e ) )  | 
						
						
							| 57 | 
							
								
							 | 
							inss1 | 
							 |-  ( ~P b i^i Fin ) C_ ~P b  | 
						
						
							| 58 | 
							
								37
							 | 
							sspwd | 
							 |-  ( b e. ~P x -> ~P b C_ ~P x )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantl | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ~P b C_ ~P x )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							sstrid | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( ~P b i^i Fin ) C_ ~P x )  | 
						
						
							| 61 | 
							
								60
							 | 
							sselda | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> e e. ~P x )  | 
						
						
							| 62 | 
							
								20 21
							 | 
							mrcssvd | 
							 |-  ( ( a C_ ( ACS ` x ) /\ d e. a ) -> ( ( mrCls ` d ) ` e ) C_ x )  | 
						
						
							| 63 | 
							
								62
							 | 
							ralrimiva | 
							 |-  ( a C_ ( ACS ` x ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x )  | 
						
						
							| 64 | 
							
								63
							 | 
							ad2antrr | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> A. d e. a ( ( mrCls ` d ) ` e ) C_ x )  | 
						
						
							| 65 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x <-> A. d e. a ( ( mrCls ` d ) ` e ) C_ x )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							sylibr | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) C_ x )  | 
						
						
							| 67 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( U_ d e. a ( ( mrCls ` d ) ` e ) C_ x /\ x e. _V ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V )  | 
						
						
							| 68 | 
							
								66 11 67
							 | 
							sylancl | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> U_ d e. a ( ( mrCls ` d ) ` e ) e. _V )  | 
						
						
							| 69 | 
							
								54 56 61 68
							 | 
							fvmptd3 | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) = U_ d e. a ( ( mrCls ` d ) ` e ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							sseq1d | 
							 |-  ( ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) /\ e e. ( ~P b i^i Fin ) ) -> ( ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ralbidva | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( A. e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 72 | 
							
								53 71
							 | 
							bitrid | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U_ e e. ( ~P b i^i Fin ) ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) ` e ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 73 | 
							
								52 72
							 | 
							bitr3id | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b <-> A. e e. ( ~P b i^i Fin ) U_ d e. a ( ( mrCls ` d ) ` e ) C_ b ) )  | 
						
						
							| 74 | 
							
								46 48 73
							 | 
							3bitr4d | 
							 |-  ( ( a C_ ( ACS ` x ) /\ b e. ~P x ) -> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							ralrimiva | 
							 |-  ( a C_ ( ACS ` x ) -> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) )  | 
						
						
							| 76 | 
							
								29 75
							 | 
							jca | 
							 |-  ( a C_ ( ACS ` x ) -> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							feq1 | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f : ~P x --> ~P x <-> ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x ) )  | 
						
						
							| 78 | 
							
								
							 | 
							imaeq1 | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( f " ( ~P b i^i Fin ) ) = ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							unieqd | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> U. ( f " ( ~P b i^i Fin ) ) = U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							sseq1d | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( U. ( f " ( ~P b i^i Fin ) ) C_ b <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							bibi2d | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ralbidv | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) <-> A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) )  | 
						
						
							| 83 | 
							
								77 82
							 | 
							anbi12d | 
							 |-  ( f = ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) -> ( ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) <-> ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( ( c e. ~P x |-> U_ d e. a ( ( mrCls ` d ) ` c ) ) " ( ~P b i^i Fin ) ) C_ b ) ) ) )  | 
						
						
							| 84 | 
							
								35 76 83
							 | 
							spcedv | 
							 |-  ( a C_ ( ACS ` x ) -> E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							isacs | 
							 |-  ( ( ~P x i^i |^| a ) e. ( ACS ` x ) <-> ( ( ~P x i^i |^| a ) e. ( Moore ` x ) /\ E. f ( f : ~P x --> ~P x /\ A. b e. ~P x ( b e. ( ~P x i^i |^| a ) <-> U. ( f " ( ~P b i^i Fin ) ) C_ b ) ) ) )  | 
						
						
							| 86 | 
							
								18 84 85
							 | 
							sylanbrc | 
							 |-  ( a C_ ( ACS ` x ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							adantl | 
							 |-  ( ( T. /\ a C_ ( ACS ` x ) ) -> ( ~P x i^i |^| a ) e. ( ACS ` x ) )  | 
						
						
							| 88 | 
							
								10 87
							 | 
							ismred2 | 
							 |-  ( T. -> ( ACS ` x ) e. ( Moore ` ~P x ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							mptru | 
							 |-  ( ACS ` x ) e. ( Moore ` ~P x )  | 
						
						
							| 90 | 
							
								4 89
							 | 
							vtoclg | 
							 |-  ( X e. V -> ( ACS ` X ) e. ( Moore ` ~P X ) )  |