Step |
Hyp |
Ref |
Expression |
1 |
|
mreclatGOOD.i |
|- I = ( toInc ` C ) |
2 |
1
|
ipobas |
|- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
3 |
|
eqidd |
|- ( C e. ( Moore ` X ) -> ( lub ` I ) = ( lub ` I ) ) |
4 |
|
eqidd |
|- ( C e. ( Moore ` X ) -> ( glb ` I ) = ( glb ` I ) ) |
5 |
1
|
ipopos |
|- I e. Poset |
6 |
5
|
a1i |
|- ( C e. ( Moore ` X ) -> I e. Poset ) |
7 |
|
mreuniss |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. x C_ X ) |
8 |
|
eqid |
|- ( mrCls ` C ) = ( mrCls ` C ) |
9 |
8
|
mrccl |
|- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
10 |
7 9
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
11 |
|
simpl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> C e. ( Moore ` X ) ) |
12 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x C_ C ) |
13 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( lub ` I ) = ( lub ` I ) ) |
14 |
8
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
15 |
7 14
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
16 |
1 11 12 13 15
|
ipolubdm |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( lub ` I ) <-> ( ( mrCls ` C ) ` U. x ) e. C ) ) |
17 |
10 16
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( lub ` I ) ) |
18 |
|
ssv |
|- y C_ _V |
19 |
|
int0 |
|- |^| (/) = _V |
20 |
18 19
|
sseqtrri |
|- y C_ |^| (/) |
21 |
|
simplr |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> x = (/) ) |
22 |
21
|
inteqd |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> |^| x = |^| (/) ) |
23 |
20 22
|
sseqtrrid |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> y C_ |^| x ) |
24 |
23
|
rabeqcda |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> { y e. C | y C_ |^| x } = C ) |
25 |
24
|
unieqd |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } = U. C ) |
26 |
|
mreuni |
|- ( C e. ( Moore ` X ) -> U. C = X ) |
27 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
28 |
26 27
|
eqeltrd |
|- ( C e. ( Moore ` X ) -> U. C e. C ) |
29 |
28
|
ad2antrr |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. C e. C ) |
30 |
25 29
|
eqeltrd |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
31 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
32 |
|
unimax |
|- ( |^| x e. C -> U. { y e. C | y C_ |^| x } = |^| x ) |
33 |
31 32
|
syl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } = |^| x ) |
34 |
33 31
|
eqeltrd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
35 |
34
|
3expa |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
36 |
30 35
|
pm2.61dane |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } e. C ) |
37 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( glb ` I ) = ( glb ` I ) ) |
38 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } = U. { y e. C | y C_ |^| x } ) |
39 |
1 11 12 37 38
|
ipoglbdm |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( glb ` I ) <-> U. { y e. C | y C_ |^| x } e. C ) ) |
40 |
36 39
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( glb ` I ) ) |
41 |
2 3 4 6 17 40
|
isclatd |
|- ( C e. ( Moore ` X ) -> I e. CLat ) |