| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mreclatBAD. | 
							 |-  ( ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat )  | 
						
						
							| 2 | 
							
								
							 | 
							fvex | 
							 |-  ( TopOpen ` W ) e. _V  | 
						
						
							| 3 | 
							
								2
							 | 
							uniex | 
							 |-  U. ( TopOpen ` W ) e. _V  | 
						
						
							| 4 | 
							
								
							 | 
							mremre | 
							 |-  ( U. ( TopOpen ` W ) e. _V -> ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mp1i | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elinel2 | 
							 |-  ( W e. ( TopSp i^i LMod ) -> W e. LMod )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` W ) = ( Base ` W )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( LSubSp ` W ) = ( LSubSp ` W )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							lssmre | 
							 |-  ( W e. LMod -> ( LSubSp ` W ) e. ( Moore ` ( Base ` W ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							syl | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( LSubSp ` W ) e. ( Moore ` ( Base ` W ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elinel1 | 
							 |-  ( W e. ( TopSp i^i LMod ) -> W e. TopSp )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` W ) = ( TopOpen ` W )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							tpsuni | 
							 |-  ( W e. TopSp -> ( Base ` W ) = U. ( TopOpen ` W ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2d | 
							 |-  ( W e. TopSp -> ( Moore ` ( Base ` W ) ) = ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							syl | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( Moore ` ( Base ` W ) ) = ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							eleqtrd | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( LSubSp ` W ) e. ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 17 | 
							
								12
							 | 
							tpstop | 
							 |-  ( W e. TopSp -> ( TopOpen ` W ) e. Top )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  U. ( TopOpen ` W ) = U. ( TopOpen ` W )  | 
						
						
							| 19 | 
							
								18
							 | 
							cldmre | 
							 |-  ( ( TopOpen ` W ) e. Top -> ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 20 | 
							
								11 17 19
							 | 
							3syl | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							mreincl | 
							 |-  ( ( ( Moore ` U. ( TopOpen ` W ) ) e. ( Moore ` ~P U. ( TopOpen ` W ) ) /\ ( LSubSp ` W ) e. ( Moore ` U. ( TopOpen ` W ) ) /\ ( Clsd ` ( TopOpen ` W ) ) e. ( Moore ` U. ( TopOpen ` W ) ) ) -> ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 22 | 
							
								5 16 20 21
							 | 
							syl3anc | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) e. ( Moore ` U. ( TopOpen ` W ) ) )  | 
						
						
							| 23 | 
							
								22 1
							 | 
							syl | 
							 |-  ( W e. ( TopSp i^i LMod ) -> ( toInc ` ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) e. CLat )  |