| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexdomd.1 |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 2 |  | mreexdomd.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | mreexdomd.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | mreexdomd.4 |  |-  ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) | 
						
							| 5 |  | mreexdomd.5 |  |-  ( ph -> S C_ ( N ` T ) ) | 
						
							| 6 |  | mreexdomd.6 |  |-  ( ph -> T C_ X ) | 
						
							| 7 |  | mreexdomd.7 |  |-  ( ph -> ( S e. Fin \/ T e. Fin ) ) | 
						
							| 8 |  | mreexdomd.8 |  |-  ( ph -> S e. I ) | 
						
							| 9 | 3 1 8 | mrissd |  |-  ( ph -> S C_ X ) | 
						
							| 10 |  | dif0 |  |-  ( X \ (/) ) = X | 
						
							| 11 | 9 10 | sseqtrrdi |  |-  ( ph -> S C_ ( X \ (/) ) ) | 
						
							| 12 | 6 10 | sseqtrrdi |  |-  ( ph -> T C_ ( X \ (/) ) ) | 
						
							| 13 |  | un0 |  |-  ( T u. (/) ) = T | 
						
							| 14 | 13 | fveq2i |  |-  ( N ` ( T u. (/) ) ) = ( N ` T ) | 
						
							| 15 | 5 14 | sseqtrrdi |  |-  ( ph -> S C_ ( N ` ( T u. (/) ) ) ) | 
						
							| 16 |  | un0 |  |-  ( S u. (/) ) = S | 
						
							| 17 | 16 8 | eqeltrid |  |-  ( ph -> ( S u. (/) ) e. I ) | 
						
							| 18 | 1 2 3 4 11 12 15 17 7 | mreexexd |  |-  ( ph -> E. i e. ~P T ( S ~~ i /\ ( i u. (/) ) e. I ) ) | 
						
							| 19 |  | simprrl |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> S ~~ i ) | 
						
							| 20 |  | simprl |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i e. ~P T ) | 
						
							| 21 | 20 | elpwid |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i C_ T ) | 
						
							| 22 | 1 | elfvexd |  |-  ( ph -> X e. _V ) | 
						
							| 23 | 22 6 | ssexd |  |-  ( ph -> T e. _V ) | 
						
							| 24 |  | ssdomg |  |-  ( T e. _V -> ( i C_ T -> i ~<_ T ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> ( i C_ T -> i ~<_ T ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> ( i C_ T -> i ~<_ T ) ) | 
						
							| 27 | 21 26 | mpd |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> i ~<_ T ) | 
						
							| 28 |  | endomtr |  |-  ( ( S ~~ i /\ i ~<_ T ) -> S ~<_ T ) | 
						
							| 29 | 19 27 28 | syl2anc |  |-  ( ( ph /\ ( i e. ~P T /\ ( S ~~ i /\ ( i u. (/) ) e. I ) ) ) -> S ~<_ T ) | 
						
							| 30 | 18 29 | rexlimddv |  |-  ( ph -> S ~<_ T ) |