| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlem2d.1 |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 2 |  | mreexexlem2d.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | mreexexlem2d.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | mreexexlem2d.4 |  |-  ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) | 
						
							| 5 |  | mreexexlem2d.5 |  |-  ( ph -> F C_ ( X \ H ) ) | 
						
							| 6 |  | mreexexlem2d.6 |  |-  ( ph -> G C_ ( X \ H ) ) | 
						
							| 7 |  | mreexexlem2d.7 |  |-  ( ph -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 8 |  | mreexexlem2d.8 |  |-  ( ph -> ( F u. H ) e. I ) | 
						
							| 9 |  | mreexexlem3d.9 |  |-  ( ph -> ( F = (/) \/ G = (/) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ F = (/) ) -> F = (/) ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ G = (/) ) -> A e. ( Moore ` X ) ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ph /\ G = (/) ) -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ G = (/) ) -> G = (/) ) | 
						
							| 14 | 13 | uneq1d |  |-  ( ( ph /\ G = (/) ) -> ( G u. H ) = ( (/) u. H ) ) | 
						
							| 15 |  | uncom |  |-  ( H u. (/) ) = ( (/) u. H ) | 
						
							| 16 |  | un0 |  |-  ( H u. (/) ) = H | 
						
							| 17 | 15 16 | eqtr3i |  |-  ( (/) u. H ) = H | 
						
							| 18 | 14 17 | eqtrdi |  |-  ( ( ph /\ G = (/) ) -> ( G u. H ) = H ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( ph /\ G = (/) ) -> ( N ` ( G u. H ) ) = ( N ` H ) ) | 
						
							| 20 | 12 19 | sseqtrd |  |-  ( ( ph /\ G = (/) ) -> F C_ ( N ` H ) ) | 
						
							| 21 | 8 | adantr |  |-  ( ( ph /\ G = (/) ) -> ( F u. H ) e. I ) | 
						
							| 22 | 3 11 21 | mrissd |  |-  ( ( ph /\ G = (/) ) -> ( F u. H ) C_ X ) | 
						
							| 23 | 22 | unssbd |  |-  ( ( ph /\ G = (/) ) -> H C_ X ) | 
						
							| 24 | 11 2 23 | mrcssidd |  |-  ( ( ph /\ G = (/) ) -> H C_ ( N ` H ) ) | 
						
							| 25 | 20 24 | unssd |  |-  ( ( ph /\ G = (/) ) -> ( F u. H ) C_ ( N ` H ) ) | 
						
							| 26 |  | ssun2 |  |-  H C_ ( F u. H ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ph /\ G = (/) ) -> H C_ ( F u. H ) ) | 
						
							| 28 | 11 2 3 25 27 21 | mrissmrcd |  |-  ( ( ph /\ G = (/) ) -> ( F u. H ) = H ) | 
						
							| 29 |  | ssequn1 |  |-  ( F C_ H <-> ( F u. H ) = H ) | 
						
							| 30 | 28 29 | sylibr |  |-  ( ( ph /\ G = (/) ) -> F C_ H ) | 
						
							| 31 | 5 | adantr |  |-  ( ( ph /\ G = (/) ) -> F C_ ( X \ H ) ) | 
						
							| 32 | 30 31 | ssind |  |-  ( ( ph /\ G = (/) ) -> F C_ ( H i^i ( X \ H ) ) ) | 
						
							| 33 |  | disjdif |  |-  ( H i^i ( X \ H ) ) = (/) | 
						
							| 34 | 32 33 | sseqtrdi |  |-  ( ( ph /\ G = (/) ) -> F C_ (/) ) | 
						
							| 35 |  | ss0b |  |-  ( F C_ (/) <-> F = (/) ) | 
						
							| 36 | 34 35 | sylib |  |-  ( ( ph /\ G = (/) ) -> F = (/) ) | 
						
							| 37 | 10 36 9 | mpjaodan |  |-  ( ph -> F = (/) ) | 
						
							| 38 |  | 0elpw |  |-  (/) e. ~P G | 
						
							| 39 | 37 38 | eqeltrdi |  |-  ( ph -> F e. ~P G ) | 
						
							| 40 | 1 | elfvexd |  |-  ( ph -> X e. _V ) | 
						
							| 41 | 5 | difss2d |  |-  ( ph -> F C_ X ) | 
						
							| 42 | 40 41 | ssexd |  |-  ( ph -> F e. _V ) | 
						
							| 43 |  | enrefg |  |-  ( F e. _V -> F ~~ F ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> F ~~ F ) | 
						
							| 45 |  | breq2 |  |-  ( i = F -> ( F ~~ i <-> F ~~ F ) ) | 
						
							| 46 |  | uneq1 |  |-  ( i = F -> ( i u. H ) = ( F u. H ) ) | 
						
							| 47 | 46 | eleq1d |  |-  ( i = F -> ( ( i u. H ) e. I <-> ( F u. H ) e. I ) ) | 
						
							| 48 | 45 47 | anbi12d |  |-  ( i = F -> ( ( F ~~ i /\ ( i u. H ) e. I ) <-> ( F ~~ F /\ ( F u. H ) e. I ) ) ) | 
						
							| 49 | 48 | rspcev |  |-  ( ( F e. ~P G /\ ( F ~~ F /\ ( F u. H ) e. I ) ) -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) | 
						
							| 50 | 39 44 8 49 | syl12anc |  |-  ( ph -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |