Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlem2d.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
2 |
|
mreexexlem2d.2 |
|- N = ( mrCls ` A ) |
3 |
|
mreexexlem2d.3 |
|- I = ( mrInd ` A ) |
4 |
|
mreexexlem2d.4 |
|- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
5 |
|
mreexexlem2d.5 |
|- ( ph -> F C_ ( X \ H ) ) |
6 |
|
mreexexlem2d.6 |
|- ( ph -> G C_ ( X \ H ) ) |
7 |
|
mreexexlem2d.7 |
|- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
8 |
|
mreexexlem2d.8 |
|- ( ph -> ( F u. H ) e. I ) |
9 |
|
mreexexlem3d.9 |
|- ( ph -> ( F = (/) \/ G = (/) ) ) |
10 |
|
simpr |
|- ( ( ph /\ F = (/) ) -> F = (/) ) |
11 |
1
|
adantr |
|- ( ( ph /\ G = (/) ) -> A e. ( Moore ` X ) ) |
12 |
7
|
adantr |
|- ( ( ph /\ G = (/) ) -> F C_ ( N ` ( G u. H ) ) ) |
13 |
|
simpr |
|- ( ( ph /\ G = (/) ) -> G = (/) ) |
14 |
13
|
uneq1d |
|- ( ( ph /\ G = (/) ) -> ( G u. H ) = ( (/) u. H ) ) |
15 |
|
uncom |
|- ( H u. (/) ) = ( (/) u. H ) |
16 |
|
un0 |
|- ( H u. (/) ) = H |
17 |
15 16
|
eqtr3i |
|- ( (/) u. H ) = H |
18 |
14 17
|
eqtrdi |
|- ( ( ph /\ G = (/) ) -> ( G u. H ) = H ) |
19 |
18
|
fveq2d |
|- ( ( ph /\ G = (/) ) -> ( N ` ( G u. H ) ) = ( N ` H ) ) |
20 |
12 19
|
sseqtrd |
|- ( ( ph /\ G = (/) ) -> F C_ ( N ` H ) ) |
21 |
8
|
adantr |
|- ( ( ph /\ G = (/) ) -> ( F u. H ) e. I ) |
22 |
3 11 21
|
mrissd |
|- ( ( ph /\ G = (/) ) -> ( F u. H ) C_ X ) |
23 |
22
|
unssbd |
|- ( ( ph /\ G = (/) ) -> H C_ X ) |
24 |
11 2 23
|
mrcssidd |
|- ( ( ph /\ G = (/) ) -> H C_ ( N ` H ) ) |
25 |
20 24
|
unssd |
|- ( ( ph /\ G = (/) ) -> ( F u. H ) C_ ( N ` H ) ) |
26 |
|
ssun2 |
|- H C_ ( F u. H ) |
27 |
26
|
a1i |
|- ( ( ph /\ G = (/) ) -> H C_ ( F u. H ) ) |
28 |
11 2 3 25 27 21
|
mrissmrcd |
|- ( ( ph /\ G = (/) ) -> ( F u. H ) = H ) |
29 |
|
ssequn1 |
|- ( F C_ H <-> ( F u. H ) = H ) |
30 |
28 29
|
sylibr |
|- ( ( ph /\ G = (/) ) -> F C_ H ) |
31 |
5
|
adantr |
|- ( ( ph /\ G = (/) ) -> F C_ ( X \ H ) ) |
32 |
30 31
|
ssind |
|- ( ( ph /\ G = (/) ) -> F C_ ( H i^i ( X \ H ) ) ) |
33 |
|
disjdif |
|- ( H i^i ( X \ H ) ) = (/) |
34 |
32 33
|
sseqtrdi |
|- ( ( ph /\ G = (/) ) -> F C_ (/) ) |
35 |
|
ss0b |
|- ( F C_ (/) <-> F = (/) ) |
36 |
34 35
|
sylib |
|- ( ( ph /\ G = (/) ) -> F = (/) ) |
37 |
10 36 9
|
mpjaodan |
|- ( ph -> F = (/) ) |
38 |
|
0elpw |
|- (/) e. ~P G |
39 |
37 38
|
eqeltrdi |
|- ( ph -> F e. ~P G ) |
40 |
1
|
elfvexd |
|- ( ph -> X e. _V ) |
41 |
5
|
difss2d |
|- ( ph -> F C_ X ) |
42 |
40 41
|
ssexd |
|- ( ph -> F e. _V ) |
43 |
|
enrefg |
|- ( F e. _V -> F ~~ F ) |
44 |
42 43
|
syl |
|- ( ph -> F ~~ F ) |
45 |
|
breq2 |
|- ( i = F -> ( F ~~ i <-> F ~~ F ) ) |
46 |
|
uneq1 |
|- ( i = F -> ( i u. H ) = ( F u. H ) ) |
47 |
46
|
eleq1d |
|- ( i = F -> ( ( i u. H ) e. I <-> ( F u. H ) e. I ) ) |
48 |
45 47
|
anbi12d |
|- ( i = F -> ( ( F ~~ i /\ ( i u. H ) e. I ) <-> ( F ~~ F /\ ( F u. H ) e. I ) ) ) |
49 |
48
|
rspcev |
|- ( ( F e. ~P G /\ ( F ~~ F /\ ( F u. H ) e. I ) ) -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |
50 |
39 44 8 49
|
syl12anc |
|- ( ph -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |