| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mreexexlem2d.1 |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 2 |  | mreexexlem2d.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | mreexexlem2d.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | mreexexlem2d.4 |  |-  ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) | 
						
							| 5 |  | mreexexlem2d.5 |  |-  ( ph -> F C_ ( X \ H ) ) | 
						
							| 6 |  | mreexexlem2d.6 |  |-  ( ph -> G C_ ( X \ H ) ) | 
						
							| 7 |  | mreexexlem2d.7 |  |-  ( ph -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 8 |  | mreexexlem2d.8 |  |-  ( ph -> ( F u. H ) e. I ) | 
						
							| 9 |  | mreexexlem4d.9 |  |-  ( ph -> L e. _om ) | 
						
							| 10 |  | mreexexlem4d.A |  |-  ( ph -> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ L \/ g ~~ L ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) | 
						
							| 11 |  | mreexexlem4d.B |  |-  ( ph -> ( F ~~ suc L \/ G ~~ suc L ) ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ F = (/) ) -> A e. ( Moore ` X ) ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ F = (/) ) -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ F = (/) ) -> F C_ ( X \ H ) ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ F = (/) ) -> G C_ ( X \ H ) ) | 
						
							| 16 | 7 | adantr |  |-  ( ( ph /\ F = (/) ) -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 17 | 8 | adantr |  |-  ( ( ph /\ F = (/) ) -> ( F u. H ) e. I ) | 
						
							| 18 |  | animorrl |  |-  ( ( ph /\ F = (/) ) -> ( F = (/) \/ G = (/) ) ) | 
						
							| 19 | 12 2 3 13 14 15 16 17 18 | mreexexlem3d |  |-  ( ( ph /\ F = (/) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 20 |  | n0 |  |-  ( F =/= (/) <-> E. r r e. F ) | 
						
							| 21 | 20 | biimpi |  |-  ( F =/= (/) -> E. r r e. F ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ F =/= (/) ) -> E. r r e. F ) | 
						
							| 23 | 1 | adantr |  |-  ( ( ph /\ r e. F ) -> A e. ( Moore ` X ) ) | 
						
							| 24 | 4 | adantr |  |-  ( ( ph /\ r e. F ) -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) | 
						
							| 25 | 5 | adantr |  |-  ( ( ph /\ r e. F ) -> F C_ ( X \ H ) ) | 
						
							| 26 | 6 | adantr |  |-  ( ( ph /\ r e. F ) -> G C_ ( X \ H ) ) | 
						
							| 27 | 7 | adantr |  |-  ( ( ph /\ r e. F ) -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 28 | 8 | adantr |  |-  ( ( ph /\ r e. F ) -> ( F u. H ) e. I ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ r e. F ) -> r e. F ) | 
						
							| 30 | 23 2 3 24 25 26 27 28 29 | mreexexlem2d |  |-  ( ( ph /\ r e. F ) -> E. q e. G ( -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) | 
						
							| 31 |  | 3anass |  |-  ( ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) <-> ( q e. G /\ ( -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) ) | 
						
							| 32 | 1 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> A e. ( Moore ` X ) ) | 
						
							| 33 | 32 | elfvexd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> X e. _V ) | 
						
							| 34 |  | simpr2 |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> -. q e. ( F \ { r } ) ) | 
						
							| 35 |  | difsnb |  |-  ( -. q e. ( F \ { r } ) <-> ( ( F \ { r } ) \ { q } ) = ( F \ { r } ) ) | 
						
							| 36 | 34 35 | sylib |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( F \ { r } ) \ { q } ) = ( F \ { r } ) ) | 
						
							| 37 | 5 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> F C_ ( X \ H ) ) | 
						
							| 38 | 37 | ssdifssd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F \ { r } ) C_ ( X \ H ) ) | 
						
							| 39 | 38 | ssdifd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( F \ { r } ) \ { q } ) C_ ( ( X \ H ) \ { q } ) ) | 
						
							| 40 | 36 39 | eqsstrrd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F \ { r } ) C_ ( ( X \ H ) \ { q } ) ) | 
						
							| 41 |  | difun1 |  |-  ( X \ ( H u. { q } ) ) = ( ( X \ H ) \ { q } ) | 
						
							| 42 | 40 41 | sseqtrrdi |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F \ { r } ) C_ ( X \ ( H u. { q } ) ) ) | 
						
							| 43 | 6 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> G C_ ( X \ H ) ) | 
						
							| 44 | 43 | ssdifd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( G \ { q } ) C_ ( ( X \ H ) \ { q } ) ) | 
						
							| 45 | 44 41 | sseqtrrdi |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( G \ { q } ) C_ ( X \ ( H u. { q } ) ) ) | 
						
							| 46 | 7 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> F C_ ( N ` ( G u. H ) ) ) | 
						
							| 47 |  | simpr1 |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> q e. G ) | 
						
							| 48 |  | uncom |  |-  ( H u. { q } ) = ( { q } u. H ) | 
						
							| 49 | 48 | uneq2i |  |-  ( ( G \ { q } ) u. ( H u. { q } ) ) = ( ( G \ { q } ) u. ( { q } u. H ) ) | 
						
							| 50 |  | unass |  |-  ( ( ( G \ { q } ) u. { q } ) u. H ) = ( ( G \ { q } ) u. ( { q } u. H ) ) | 
						
							| 51 |  | difsnid |  |-  ( q e. G -> ( ( G \ { q } ) u. { q } ) = G ) | 
						
							| 52 | 51 | uneq1d |  |-  ( q e. G -> ( ( ( G \ { q } ) u. { q } ) u. H ) = ( G u. H ) ) | 
						
							| 53 | 50 52 | eqtr3id |  |-  ( q e. G -> ( ( G \ { q } ) u. ( { q } u. H ) ) = ( G u. H ) ) | 
						
							| 54 | 49 53 | eqtrid |  |-  ( q e. G -> ( ( G \ { q } ) u. ( H u. { q } ) ) = ( G u. H ) ) | 
						
							| 55 | 47 54 | syl |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( G \ { q } ) u. ( H u. { q } ) ) = ( G u. H ) ) | 
						
							| 56 | 55 | fveq2d |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( N ` ( ( G \ { q } ) u. ( H u. { q } ) ) ) = ( N ` ( G u. H ) ) ) | 
						
							| 57 | 46 56 | sseqtrrd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> F C_ ( N ` ( ( G \ { q } ) u. ( H u. { q } ) ) ) ) | 
						
							| 58 | 57 | ssdifssd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F \ { r } ) C_ ( N ` ( ( G \ { q } ) u. ( H u. { q } ) ) ) ) | 
						
							| 59 |  | simpr3 |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) | 
						
							| 60 | 11 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F ~~ suc L \/ G ~~ suc L ) ) | 
						
							| 61 | 9 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> L e. _om ) | 
						
							| 62 |  | simplr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> r e. F ) | 
						
							| 63 |  | 3anan12 |  |-  ( ( L e. _om /\ F ~~ suc L /\ r e. F ) <-> ( F ~~ suc L /\ ( L e. _om /\ r e. F ) ) ) | 
						
							| 64 |  | dif1ennn |  |-  ( ( L e. _om /\ F ~~ suc L /\ r e. F ) -> ( F \ { r } ) ~~ L ) | 
						
							| 65 | 63 64 | sylbir |  |-  ( ( F ~~ suc L /\ ( L e. _om /\ r e. F ) ) -> ( F \ { r } ) ~~ L ) | 
						
							| 66 | 65 | expcom |  |-  ( ( L e. _om /\ r e. F ) -> ( F ~~ suc L -> ( F \ { r } ) ~~ L ) ) | 
						
							| 67 | 61 62 66 | syl2anc |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( F ~~ suc L -> ( F \ { r } ) ~~ L ) ) | 
						
							| 68 |  | 3anan12 |  |-  ( ( L e. _om /\ G ~~ suc L /\ q e. G ) <-> ( G ~~ suc L /\ ( L e. _om /\ q e. G ) ) ) | 
						
							| 69 |  | dif1ennn |  |-  ( ( L e. _om /\ G ~~ suc L /\ q e. G ) -> ( G \ { q } ) ~~ L ) | 
						
							| 70 | 68 69 | sylbir |  |-  ( ( G ~~ suc L /\ ( L e. _om /\ q e. G ) ) -> ( G \ { q } ) ~~ L ) | 
						
							| 71 | 70 | expcom |  |-  ( ( L e. _om /\ q e. G ) -> ( G ~~ suc L -> ( G \ { q } ) ~~ L ) ) | 
						
							| 72 | 61 47 71 | syl2anc |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( G ~~ suc L -> ( G \ { q } ) ~~ L ) ) | 
						
							| 73 | 67 72 | orim12d |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( F ~~ suc L \/ G ~~ suc L ) -> ( ( F \ { r } ) ~~ L \/ ( G \ { q } ) ~~ L ) ) ) | 
						
							| 74 | 60 73 | mpd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> ( ( F \ { r } ) ~~ L \/ ( G \ { q } ) ~~ L ) ) | 
						
							| 75 | 10 | ad2antrr |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ L \/ g ~~ L ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) | 
						
							| 76 | 33 42 45 58 59 74 75 | mreexexlemd |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> E. i e. ~P ( G \ { q } ) ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) | 
						
							| 77 | 33 | adantr |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> X e. _V ) | 
						
							| 78 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> G C_ ( X \ H ) ) | 
						
							| 79 | 78 | difss2d |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> G C_ X ) | 
						
							| 80 | 77 79 | ssexd |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> G e. _V ) | 
						
							| 81 |  | simprl |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> i e. ~P ( G \ { q } ) ) | 
						
							| 82 | 81 | elpwid |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> i C_ ( G \ { q } ) ) | 
						
							| 83 | 82 | difss2d |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> i C_ G ) | 
						
							| 84 |  | simplr1 |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> q e. G ) | 
						
							| 85 | 84 | snssd |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> { q } C_ G ) | 
						
							| 86 | 83 85 | unssd |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( i u. { q } ) C_ G ) | 
						
							| 87 | 80 86 | sselpwd |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( i u. { q } ) e. ~P G ) | 
						
							| 88 |  | difsnid |  |-  ( r e. F -> ( ( F \ { r } ) u. { r } ) = F ) | 
						
							| 89 | 88 | ad3antlr |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( ( F \ { r } ) u. { r } ) = F ) | 
						
							| 90 |  | simprrl |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( F \ { r } ) ~~ i ) | 
						
							| 91 |  | en2sn |  |-  ( ( r e. _V /\ q e. _V ) -> { r } ~~ { q } ) | 
						
							| 92 | 91 | el2v |  |-  { r } ~~ { q } | 
						
							| 93 | 92 | a1i |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> { r } ~~ { q } ) | 
						
							| 94 |  | disjdifr |  |-  ( ( F \ { r } ) i^i { r } ) = (/) | 
						
							| 95 | 94 | a1i |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( ( F \ { r } ) i^i { r } ) = (/) ) | 
						
							| 96 |  | ssdifin0 |  |-  ( i C_ ( G \ { q } ) -> ( i i^i { q } ) = (/) ) | 
						
							| 97 | 82 96 | syl |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( i i^i { q } ) = (/) ) | 
						
							| 98 |  | unen |  |-  ( ( ( ( F \ { r } ) ~~ i /\ { r } ~~ { q } ) /\ ( ( ( F \ { r } ) i^i { r } ) = (/) /\ ( i i^i { q } ) = (/) ) ) -> ( ( F \ { r } ) u. { r } ) ~~ ( i u. { q } ) ) | 
						
							| 99 | 90 93 95 97 98 | syl22anc |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( ( F \ { r } ) u. { r } ) ~~ ( i u. { q } ) ) | 
						
							| 100 | 89 99 | eqbrtrrd |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> F ~~ ( i u. { q } ) ) | 
						
							| 101 |  | unass |  |-  ( ( i u. { q } ) u. H ) = ( i u. ( { q } u. H ) ) | 
						
							| 102 |  | uncom |  |-  ( { q } u. H ) = ( H u. { q } ) | 
						
							| 103 | 102 | uneq2i |  |-  ( i u. ( { q } u. H ) ) = ( i u. ( H u. { q } ) ) | 
						
							| 104 | 101 103 | eqtr2i |  |-  ( i u. ( H u. { q } ) ) = ( ( i u. { q } ) u. H ) | 
						
							| 105 |  | simprrr |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( i u. ( H u. { q } ) ) e. I ) | 
						
							| 106 | 104 105 | eqeltrrid |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> ( ( i u. { q } ) u. H ) e. I ) | 
						
							| 107 |  | breq2 |  |-  ( j = ( i u. { q } ) -> ( F ~~ j <-> F ~~ ( i u. { q } ) ) ) | 
						
							| 108 |  | uneq1 |  |-  ( j = ( i u. { q } ) -> ( j u. H ) = ( ( i u. { q } ) u. H ) ) | 
						
							| 109 | 108 | eleq1d |  |-  ( j = ( i u. { q } ) -> ( ( j u. H ) e. I <-> ( ( i u. { q } ) u. H ) e. I ) ) | 
						
							| 110 | 107 109 | anbi12d |  |-  ( j = ( i u. { q } ) -> ( ( F ~~ j /\ ( j u. H ) e. I ) <-> ( F ~~ ( i u. { q } ) /\ ( ( i u. { q } ) u. H ) e. I ) ) ) | 
						
							| 111 | 110 | rspcev |  |-  ( ( ( i u. { q } ) e. ~P G /\ ( F ~~ ( i u. { q } ) /\ ( ( i u. { q } ) u. H ) e. I ) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 112 | 87 100 106 111 | syl12anc |  |-  ( ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) /\ ( i e. ~P ( G \ { q } ) /\ ( ( F \ { r } ) ~~ i /\ ( i u. ( H u. { q } ) ) e. I ) ) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 113 | 76 112 | rexlimddv |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 114 | 31 113 | sylan2br |  |-  ( ( ( ph /\ r e. F ) /\ ( q e. G /\ ( -. q e. ( F \ { r } ) /\ ( ( F \ { r } ) u. ( H u. { q } ) ) e. I ) ) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 115 | 30 114 | rexlimddv |  |-  ( ( ph /\ r e. F ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 116 | 115 | adantlr |  |-  ( ( ( ph /\ F =/= (/) ) /\ r e. F ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 117 | 22 116 | exlimddv |  |-  ( ( ph /\ F =/= (/) ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) | 
						
							| 118 | 19 117 | pm2.61dane |  |-  ( ph -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) |