Step |
Hyp |
Ref |
Expression |
1 |
|
mreexexlemd.1 |
|- ( ph -> X e. J ) |
2 |
|
mreexexlemd.2 |
|- ( ph -> F C_ ( X \ H ) ) |
3 |
|
mreexexlemd.3 |
|- ( ph -> G C_ ( X \ H ) ) |
4 |
|
mreexexlemd.4 |
|- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
5 |
|
mreexexlemd.5 |
|- ( ph -> ( F u. H ) e. I ) |
6 |
|
mreexexlemd.6 |
|- ( ph -> ( F ~~ K \/ G ~~ K ) ) |
7 |
|
mreexexlemd.7 |
|- ( ph -> A. t A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) ) |
8 |
|
simplr |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> u = f ) |
9 |
8
|
breq1d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u ~~ K <-> f ~~ K ) ) |
10 |
|
simpr |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> v = g ) |
11 |
10
|
breq1d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( v ~~ K <-> g ~~ K ) ) |
12 |
9 11
|
orbi12d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( u ~~ K \/ v ~~ K ) <-> ( f ~~ K \/ g ~~ K ) ) ) |
13 |
|
simpll |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> t = h ) |
14 |
10 13
|
uneq12d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( v u. t ) = ( g u. h ) ) |
15 |
14
|
fveq2d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( N ` ( v u. t ) ) = ( N ` ( g u. h ) ) ) |
16 |
8 15
|
sseq12d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u C_ ( N ` ( v u. t ) ) <-> f C_ ( N ` ( g u. h ) ) ) ) |
17 |
8 13
|
uneq12d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( u u. t ) = ( f u. h ) ) |
18 |
17
|
eleq1d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( u u. t ) e. I <-> ( f u. h ) e. I ) ) |
19 |
12 16 18
|
3anbi123d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) <-> ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) ) ) |
20 |
|
simpllr |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> u = f ) |
21 |
|
simpr |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> i = j ) |
22 |
20 21
|
breq12d |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( u ~~ i <-> f ~~ j ) ) |
23 |
|
simplll |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> t = h ) |
24 |
21 23
|
uneq12d |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( i u. t ) = ( j u. h ) ) |
25 |
24
|
eleq1d |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( ( i u. t ) e. I <-> ( j u. h ) e. I ) ) |
26 |
22 25
|
anbi12d |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ( ( u ~~ i /\ ( i u. t ) e. I ) <-> ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
27 |
|
simplr |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> v = g ) |
28 |
27
|
pweqd |
|- ( ( ( ( t = h /\ u = f ) /\ v = g ) /\ i = j ) -> ~P v = ~P g ) |
29 |
26 28
|
cbvrexdva2 |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) <-> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
30 |
19 29
|
imbi12d |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ( ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
31 |
|
simpl |
|- ( ( t = h /\ u = f ) -> t = h ) |
32 |
31
|
difeq2d |
|- ( ( t = h /\ u = f ) -> ( X \ t ) = ( X \ h ) ) |
33 |
32
|
pweqd |
|- ( ( t = h /\ u = f ) -> ~P ( X \ t ) = ~P ( X \ h ) ) |
34 |
33
|
adantr |
|- ( ( ( t = h /\ u = f ) /\ v = g ) -> ~P ( X \ t ) = ~P ( X \ h ) ) |
35 |
30 34
|
cbvraldva2 |
|- ( ( t = h /\ u = f ) -> ( A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
36 |
35 33
|
cbvraldva2 |
|- ( t = h -> ( A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) ) |
37 |
36
|
cbvalvw |
|- ( A. t A. u e. ~P ( X \ t ) A. v e. ~P ( X \ t ) ( ( ( u ~~ K \/ v ~~ K ) /\ u C_ ( N ` ( v u. t ) ) /\ ( u u. t ) e. I ) -> E. i e. ~P v ( u ~~ i /\ ( i u. t ) e. I ) ) <-> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
38 |
7 37
|
sylib |
|- ( ph -> A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) ) |
39 |
|
ssun2 |
|- H C_ ( F u. H ) |
40 |
39
|
a1i |
|- ( ph -> H C_ ( F u. H ) ) |
41 |
5 40
|
ssexd |
|- ( ph -> H e. _V ) |
42 |
1
|
difexd |
|- ( ph -> ( X \ H ) e. _V ) |
43 |
42 2
|
sselpwd |
|- ( ph -> F e. ~P ( X \ H ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ h = H ) -> F e. ~P ( X \ H ) ) |
45 |
|
simpr |
|- ( ( ph /\ h = H ) -> h = H ) |
46 |
45
|
difeq2d |
|- ( ( ph /\ h = H ) -> ( X \ h ) = ( X \ H ) ) |
47 |
46
|
pweqd |
|- ( ( ph /\ h = H ) -> ~P ( X \ h ) = ~P ( X \ H ) ) |
48 |
44 47
|
eleqtrrd |
|- ( ( ph /\ h = H ) -> F e. ~P ( X \ h ) ) |
49 |
42 3
|
sselpwd |
|- ( ph -> G e. ~P ( X \ H ) ) |
50 |
49
|
ad2antrr |
|- ( ( ( ph /\ h = H ) /\ f = F ) -> G e. ~P ( X \ H ) ) |
51 |
47
|
adantr |
|- ( ( ( ph /\ h = H ) /\ f = F ) -> ~P ( X \ h ) = ~P ( X \ H ) ) |
52 |
50 51
|
eleqtrrd |
|- ( ( ( ph /\ h = H ) /\ f = F ) -> G e. ~P ( X \ h ) ) |
53 |
|
simplr |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> f = F ) |
54 |
53
|
breq1d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f ~~ K <-> F ~~ K ) ) |
55 |
|
simpr |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> g = G ) |
56 |
55
|
breq1d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( g ~~ K <-> G ~~ K ) ) |
57 |
54 56
|
orbi12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f ~~ K \/ g ~~ K ) <-> ( F ~~ K \/ G ~~ K ) ) ) |
58 |
|
simpllr |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> h = H ) |
59 |
55 58
|
uneq12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( g u. h ) = ( G u. H ) ) |
60 |
59
|
fveq2d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( N ` ( g u. h ) ) = ( N ` ( G u. H ) ) ) |
61 |
53 60
|
sseq12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f C_ ( N ` ( g u. h ) ) <-> F C_ ( N ` ( G u. H ) ) ) ) |
62 |
53 58
|
uneq12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f u. h ) = ( F u. H ) ) |
63 |
62
|
eleq1d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f u. h ) e. I <-> ( F u. H ) e. I ) ) |
64 |
57 61 63
|
3anbi123d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) <-> ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) ) ) |
65 |
55
|
pweqd |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ~P g = ~P G ) |
66 |
53
|
breq1d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( f ~~ j <-> F ~~ j ) ) |
67 |
58
|
uneq2d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( j u. h ) = ( j u. H ) ) |
68 |
67
|
eleq1d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( j u. h ) e. I <-> ( j u. H ) e. I ) ) |
69 |
66 68
|
anbi12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( f ~~ j /\ ( j u. h ) e. I ) <-> ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
70 |
65 69
|
rexeqbidv |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) <-> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
71 |
64 70
|
imbi12d |
|- ( ( ( ( ph /\ h = H ) /\ f = F ) /\ g = G ) -> ( ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) <-> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
72 |
52 71
|
rspcdv |
|- ( ( ( ph /\ h = H ) /\ f = F ) -> ( A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
73 |
48 72
|
rspcimdv |
|- ( ( ph /\ h = H ) -> ( A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
74 |
41 73
|
spcimdv |
|- ( ph -> ( A. h A. f e. ~P ( X \ h ) A. g e. ~P ( X \ h ) ( ( ( f ~~ K \/ g ~~ K ) /\ f C_ ( N ` ( g u. h ) ) /\ ( f u. h ) e. I ) -> E. j e. ~P g ( f ~~ j /\ ( j u. h ) e. I ) ) -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) ) |
75 |
38 74
|
mpd |
|- ( ph -> ( ( ( F ~~ K \/ G ~~ K ) /\ F C_ ( N ` ( G u. H ) ) /\ ( F u. H ) e. I ) -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) ) |
76 |
6 4 5 75
|
mp3and |
|- ( ph -> E. j e. ~P G ( F ~~ j /\ ( j u. H ) e. I ) ) |