Step |
Hyp |
Ref |
Expression |
1 |
|
intprg |
|- ( ( A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) |
2 |
1
|
3adant1 |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) |
3 |
|
simp1 |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> C e. ( Moore ` X ) ) |
4 |
|
prssi |
|- ( ( A e. C /\ B e. C ) -> { A , B } C_ C ) |
5 |
4
|
3adant1 |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } C_ C ) |
6 |
|
prnzg |
|- ( A e. C -> { A , B } =/= (/) ) |
7 |
6
|
3ad2ant2 |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } =/= (/) ) |
8 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ { A , B } C_ C /\ { A , B } =/= (/) ) -> |^| { A , B } e. C ) |
9 |
3 5 7 8
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } e. C ) |
10 |
2 9
|
eqeltrrd |
|- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |