| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							intprg | 
							 |-  ( ( A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) | 
						
						
							| 2 | 
							
								1
							 | 
							3adant1 | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) | 
						
						
							| 3 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> C e. ( Moore ` X ) )  | 
						
						
							| 4 | 
							
								
							 | 
							prssi | 
							 |-  ( ( A e. C /\ B e. C ) -> { A , B } C_ C ) | 
						
						
							| 5 | 
							
								4
							 | 
							3adant1 | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } C_ C ) | 
						
						
							| 6 | 
							
								
							 | 
							prnzg | 
							 |-  ( A e. C -> { A , B } =/= (/) ) | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant2 | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } =/= (/) ) | 
						
						
							| 8 | 
							
								
							 | 
							mreintcl | 
							 |-  ( ( C e. ( Moore ` X ) /\ { A , B } C_ C /\ { A , B } =/= (/) ) -> |^| { A , B } e. C ) | 
						
						
							| 9 | 
							
								3 5 7 8
							 | 
							syl3anc | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } e. C ) | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqeltrrd | 
							 |-  ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C )  |