Step |
Hyp |
Ref |
Expression |
1 |
|
elpw2g |
|- ( C e. ( Moore ` X ) -> ( S e. ~P C <-> S C_ C ) ) |
2 |
1
|
biimpar |
|- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> S e. ~P C ) |
3 |
2
|
3adant3 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S e. ~P C ) |
4 |
|
ismre |
|- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
5 |
4
|
simp3bi |
|- ( C e. ( Moore ` X ) -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
7 |
|
simp3 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S =/= (/) ) |
8 |
|
neeq1 |
|- ( s = S -> ( s =/= (/) <-> S =/= (/) ) ) |
9 |
|
inteq |
|- ( s = S -> |^| s = |^| S ) |
10 |
9
|
eleq1d |
|- ( s = S -> ( |^| s e. C <-> |^| S e. C ) ) |
11 |
8 10
|
imbi12d |
|- ( s = S -> ( ( s =/= (/) -> |^| s e. C ) <-> ( S =/= (/) -> |^| S e. C ) ) ) |
12 |
11
|
rspcva |
|- ( ( S e. ~P C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) -> ( S =/= (/) -> |^| S e. C ) ) |
13 |
12
|
3impia |
|- ( ( S e. ~P C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) /\ S =/= (/) ) -> |^| S e. C ) |
14 |
3 6 7 13
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> |^| S e. C ) |