Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
|- I = ( toInc ` C ) |
2 |
|
mrelatglb.g |
|- G = ( glb ` I ) |
3 |
|
eqid |
|- ( le ` I ) = ( le ` I ) |
4 |
1
|
ipobas |
|- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> C = ( Base ` I ) ) |
6 |
2
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> G = ( glb ` I ) ) |
7 |
1
|
ipopos |
|- I e. Poset |
8 |
7
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> I e. Poset ) |
9 |
|
simp2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> U C_ C ) |
10 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> |^| U e. C ) |
11 |
|
intss1 |
|- ( x e. U -> |^| U C_ x ) |
12 |
11
|
adantl |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U C_ x ) |
13 |
|
simpl1 |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
14 |
10
|
adantr |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U e. C ) |
15 |
9
|
sselda |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> x e. C ) |
16 |
1 3
|
ipole |
|- ( ( C e. ( Moore ` X ) /\ |^| U e. C /\ x e. C ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) ) |
18 |
12 17
|
mpbird |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U ( le ` I ) x ) |
19 |
|
simpll1 |
|- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
20 |
|
simplr |
|- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> y e. C ) |
21 |
|
simpl2 |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> U C_ C ) |
22 |
21
|
sselda |
|- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> x e. C ) |
23 |
1 3
|
ipole |
|- ( ( C e. ( Moore ` X ) /\ y e. C /\ x e. C ) -> ( y ( le ` I ) x <-> y C_ x ) ) |
24 |
19 20 22 23
|
syl3anc |
|- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x <-> y C_ x ) ) |
25 |
24
|
biimpd |
|- ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x -> y C_ x ) ) |
26 |
25
|
ralimdva |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> ( A. x e. U y ( le ` I ) x -> A. x e. U y C_ x ) ) |
27 |
26
|
3impia |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> A. x e. U y C_ x ) |
28 |
|
ssint |
|- ( y C_ |^| U <-> A. x e. U y C_ x ) |
29 |
27 28
|
sylibr |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y C_ |^| U ) |
30 |
|
simp11 |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> C e. ( Moore ` X ) ) |
31 |
|
simp2 |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y e. C ) |
32 |
10
|
3ad2ant1 |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> |^| U e. C ) |
33 |
1 3
|
ipole |
|- ( ( C e. ( Moore ` X ) /\ y e. C /\ |^| U e. C ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) ) |
34 |
30 31 32 33
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) ) |
35 |
29 34
|
mpbird |
|- ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y ( le ` I ) |^| U ) |
36 |
3 5 6 8 9 10 18 35
|
posglbdg |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U ) |