Metamath Proof Explorer


Theorem mrelatglb

Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatglbALT for an alternate proof.

Ref Expression
Hypotheses mreclat.i
|- I = ( toInc ` C )
mrelatglb.g
|- G = ( glb ` I )
Assertion mrelatglb
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U )

Proof

Step Hyp Ref Expression
1 mreclat.i
 |-  I = ( toInc ` C )
2 mrelatglb.g
 |-  G = ( glb ` I )
3 eqid
 |-  ( le ` I ) = ( le ` I )
4 1 ipobas
 |-  ( C e. ( Moore ` X ) -> C = ( Base ` I ) )
5 4 3ad2ant1
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> C = ( Base ` I ) )
6 2 a1i
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> G = ( glb ` I ) )
7 1 ipopos
 |-  I e. Poset
8 7 a1i
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> I e. Poset )
9 simp2
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> U C_ C )
10 mreintcl
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> |^| U e. C )
11 intss1
 |-  ( x e. U -> |^| U C_ x )
12 11 adantl
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U C_ x )
13 simpl1
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> C e. ( Moore ` X ) )
14 10 adantr
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U e. C )
15 9 sselda
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> x e. C )
16 1 3 ipole
 |-  ( ( C e. ( Moore ` X ) /\ |^| U e. C /\ x e. C ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) )
17 13 14 15 16 syl3anc
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> ( |^| U ( le ` I ) x <-> |^| U C_ x ) )
18 12 17 mpbird
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ x e. U ) -> |^| U ( le ` I ) x )
19 simpll1
 |-  ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> C e. ( Moore ` X ) )
20 simplr
 |-  ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> y e. C )
21 simpl2
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> U C_ C )
22 21 sselda
 |-  ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> x e. C )
23 1 3 ipole
 |-  ( ( C e. ( Moore ` X ) /\ y e. C /\ x e. C ) -> ( y ( le ` I ) x <-> y C_ x ) )
24 19 20 22 23 syl3anc
 |-  ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x <-> y C_ x ) )
25 24 biimpd
 |-  ( ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) /\ x e. U ) -> ( y ( le ` I ) x -> y C_ x ) )
26 25 ralimdva
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C ) -> ( A. x e. U y ( le ` I ) x -> A. x e. U y C_ x ) )
27 26 3impia
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> A. x e. U y C_ x )
28 ssint
 |-  ( y C_ |^| U <-> A. x e. U y C_ x )
29 27 28 sylibr
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y C_ |^| U )
30 simp11
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> C e. ( Moore ` X ) )
31 simp2
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y e. C )
32 10 3ad2ant1
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> |^| U e. C )
33 1 3 ipole
 |-  ( ( C e. ( Moore ` X ) /\ y e. C /\ |^| U e. C ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) )
34 30 31 32 33 syl3anc
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> ( y ( le ` I ) |^| U <-> y C_ |^| U ) )
35 29 34 mpbird
 |-  ( ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) /\ y e. C /\ A. x e. U y ( le ` I ) x ) -> y ( le ` I ) |^| U )
36 3 5 6 8 9 10 18 35 posglbdg
 |-  ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U )