Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
|- I = ( toInc ` C ) |
2 |
|
mrelatglb.g |
|- G = ( glb ` I ) |
3 |
|
eqid |
|- ( le ` I ) = ( le ` I ) |
4 |
1
|
ipobas |
|- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
5 |
2
|
a1i |
|- ( C e. ( Moore ` X ) -> G = ( glb ` I ) ) |
6 |
1
|
ipopos |
|- I e. Poset |
7 |
6
|
a1i |
|- ( C e. ( Moore ` X ) -> I e. Poset ) |
8 |
|
0ss |
|- (/) C_ C |
9 |
8
|
a1i |
|- ( C e. ( Moore ` X ) -> (/) C_ C ) |
10 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
11 |
|
ral0 |
|- A. x e. (/) X ( le ` I ) x |
12 |
11
|
rspec |
|- ( x e. (/) -> X ( le ` I ) x ) |
13 |
12
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ x e. (/) ) -> X ( le ` I ) x ) |
14 |
|
mress |
|- ( ( C e. ( Moore ` X ) /\ y e. C ) -> y C_ X ) |
15 |
10
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ y e. C ) -> X e. C ) |
16 |
1 3
|
ipole |
|- ( ( C e. ( Moore ` X ) /\ y e. C /\ X e. C ) -> ( y ( le ` I ) X <-> y C_ X ) ) |
17 |
15 16
|
mpd3an3 |
|- ( ( C e. ( Moore ` X ) /\ y e. C ) -> ( y ( le ` I ) X <-> y C_ X ) ) |
18 |
14 17
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ y e. C ) -> y ( le ` I ) X ) |
19 |
18
|
3adant3 |
|- ( ( C e. ( Moore ` X ) /\ y e. C /\ A. x e. (/) y ( le ` I ) x ) -> y ( le ` I ) X ) |
20 |
3 4 5 7 9 10 13 19
|
posglbdg |
|- ( C e. ( Moore ` X ) -> ( G ` (/) ) = X ) |