Step |
Hyp |
Ref |
Expression |
1 |
|
mreclatGOOD.i |
|- I = ( toInc ` C ) |
2 |
|
mrelatglbALT.g |
|- G = ( glb ` I ) |
3 |
|
simp1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> C e. ( Moore ` X ) ) |
4 |
|
simp2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> U C_ C ) |
5 |
2
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> G = ( glb ` I ) ) |
6 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> |^| U e. C ) |
7 |
|
unimax |
|- ( |^| U e. C -> U. { x e. C | x C_ |^| U } = |^| U ) |
8 |
7
|
eqcomd |
|- ( |^| U e. C -> |^| U = U. { x e. C | x C_ |^| U } ) |
9 |
6 8
|
syl |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> |^| U = U. { x e. C | x C_ |^| U } ) |
10 |
1 3 4 5 9 6
|
ipoglb |
|- ( ( C e. ( Moore ` X ) /\ U C_ C /\ U =/= (/) ) -> ( G ` U ) = |^| U ) |