Step |
Hyp |
Ref |
Expression |
1 |
|
mreclatGOOD.i |
|- I = ( toInc ` C ) |
2 |
|
mrelatlubALT.f |
|- F = ( mrCls ` C ) |
3 |
|
mrelatlubALT.l |
|- L = ( lub ` I ) |
4 |
|
simpl |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> C e. ( Moore ` X ) ) |
5 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> U C_ C ) |
6 |
3
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> L = ( lub ` I ) ) |
7 |
|
mreuniss |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> U. U C_ X ) |
8 |
2
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` U. U ) = |^| { x e. C | U. U C_ x } ) |
9 |
7 8
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( F ` U. U ) = |^| { x e. C | U. U C_ x } ) |
10 |
2
|
mrccl |
|- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` U. U ) e. C ) |
11 |
7 10
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( F ` U. U ) e. C ) |
12 |
1 4 5 6 9 11
|
ipolub |
|- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( L ` U ) = ( F ` U. U ) ) |