Step |
Hyp |
Ref |
Expression |
1 |
|
mresspw |
|- ( a e. ( Moore ` X ) -> a C_ ~P X ) |
2 |
|
velpw |
|- ( a e. ~P ~P X <-> a C_ ~P X ) |
3 |
1 2
|
sylibr |
|- ( a e. ( Moore ` X ) -> a e. ~P ~P X ) |
4 |
3
|
ssriv |
|- ( Moore ` X ) C_ ~P ~P X |
5 |
4
|
a1i |
|- ( X e. V -> ( Moore ` X ) C_ ~P ~P X ) |
6 |
|
ssidd |
|- ( X e. V -> ~P X C_ ~P X ) |
7 |
|
pwidg |
|- ( X e. V -> X e. ~P X ) |
8 |
|
intssuni2 |
|- ( ( a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X ) |
9 |
8
|
3adant1 |
|- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X ) |
10 |
|
unipw |
|- U. ~P X = X |
11 |
9 10
|
sseqtrdi |
|- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ X ) |
12 |
|
elpw2g |
|- ( X e. V -> ( |^| a e. ~P X <-> |^| a C_ X ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> ( |^| a e. ~P X <-> |^| a C_ X ) ) |
14 |
11 13
|
mpbird |
|- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a e. ~P X ) |
15 |
6 7 14
|
ismred |
|- ( X e. V -> ~P X e. ( Moore ` X ) ) |
16 |
|
n0 |
|- ( a =/= (/) <-> E. b b e. a ) |
17 |
|
intss1 |
|- ( b e. a -> |^| a C_ b ) |
18 |
17
|
adantl |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ b ) |
19 |
|
simpr |
|- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> a C_ ( Moore ` X ) ) |
20 |
19
|
sselda |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b e. ( Moore ` X ) ) |
21 |
|
mresspw |
|- ( b e. ( Moore ` X ) -> b C_ ~P X ) |
22 |
20 21
|
syl |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b C_ ~P X ) |
23 |
18 22
|
sstrd |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ ~P X ) |
24 |
23
|
ex |
|- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( b e. a -> |^| a C_ ~P X ) ) |
25 |
24
|
exlimdv |
|- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( E. b b e. a -> |^| a C_ ~P X ) ) |
26 |
16 25
|
syl5bi |
|- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( a =/= (/) -> |^| a C_ ~P X ) ) |
27 |
26
|
3impia |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a C_ ~P X ) |
28 |
|
simp2 |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> a C_ ( Moore ` X ) ) |
29 |
28
|
sselda |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> b e. ( Moore ` X ) ) |
30 |
|
mre1cl |
|- ( b e. ( Moore ` X ) -> X e. b ) |
31 |
29 30
|
syl |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> X e. b ) |
32 |
31
|
ralrimiva |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> A. b e. a X e. b ) |
33 |
|
elintg |
|- ( X e. V -> ( X e. |^| a <-> A. b e. a X e. b ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> ( X e. |^| a <-> A. b e. a X e. b ) ) |
35 |
32 34
|
mpbird |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> X e. |^| a ) |
36 |
|
simp12 |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> a C_ ( Moore ` X ) ) |
37 |
36
|
sselda |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> c e. ( Moore ` X ) ) |
38 |
|
simpl2 |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ |^| a ) |
39 |
|
intss1 |
|- ( c e. a -> |^| a C_ c ) |
40 |
39
|
adantl |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| a C_ c ) |
41 |
38 40
|
sstrd |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ c ) |
42 |
|
simpl3 |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b =/= (/) ) |
43 |
|
mreintcl |
|- ( ( c e. ( Moore ` X ) /\ b C_ c /\ b =/= (/) ) -> |^| b e. c ) |
44 |
37 41 42 43
|
syl3anc |
|- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| b e. c ) |
45 |
44
|
ralrimiva |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> A. c e. a |^| b e. c ) |
46 |
|
intex |
|- ( b =/= (/) <-> |^| b e. _V ) |
47 |
|
elintg |
|- ( |^| b e. _V -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
48 |
46 47
|
sylbi |
|- ( b =/= (/) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
49 |
48
|
3ad2ant3 |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
50 |
45 49
|
mpbird |
|- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> |^| b e. |^| a ) |
51 |
27 35 50
|
ismred |
|- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a e. ( Moore ` X ) ) |
52 |
5 15 51
|
ismred |
|- ( X e. V -> ( Moore ` X ) e. ( Moore ` ~P X ) ) |