| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mresspw | 
							 |-  ( a e. ( Moore ` X ) -> a C_ ~P X )  | 
						
						
							| 2 | 
							
								
							 | 
							velpw | 
							 |-  ( a e. ~P ~P X <-> a C_ ~P X )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylibr | 
							 |-  ( a e. ( Moore ` X ) -> a e. ~P ~P X )  | 
						
						
							| 4 | 
							
								3
							 | 
							ssriv | 
							 |-  ( Moore ` X ) C_ ~P ~P X  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							 |-  ( X e. V -> ( Moore ` X ) C_ ~P ~P X )  | 
						
						
							| 6 | 
							
								
							 | 
							ssidd | 
							 |-  ( X e. V -> ~P X C_ ~P X )  | 
						
						
							| 7 | 
							
								
							 | 
							pwidg | 
							 |-  ( X e. V -> X e. ~P X )  | 
						
						
							| 8 | 
							
								
							 | 
							intssuni2 | 
							 |-  ( ( a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant1 | 
							 |-  ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X )  | 
						
						
							| 10 | 
							
								
							 | 
							unipw | 
							 |-  U. ~P X = X  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sseqtrdi | 
							 |-  ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ X )  | 
						
						
							| 12 | 
							
								
							 | 
							elpw2g | 
							 |-  ( X e. V -> ( |^| a e. ~P X <-> |^| a C_ X ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant1 | 
							 |-  ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> ( |^| a e. ~P X <-> |^| a C_ X ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							mpbird | 
							 |-  ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a e. ~P X )  | 
						
						
							| 15 | 
							
								6 7 14
							 | 
							ismred | 
							 |-  ( X e. V -> ~P X e. ( Moore ` X ) )  | 
						
						
							| 16 | 
							
								
							 | 
							n0 | 
							 |-  ( a =/= (/) <-> E. b b e. a )  | 
						
						
							| 17 | 
							
								
							 | 
							intss1 | 
							 |-  ( b e. a -> |^| a C_ b )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ b )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) ) -> a C_ ( Moore ` X ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							sselda | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b e. ( Moore ` X ) )  | 
						
						
							| 21 | 
							
								
							 | 
							mresspw | 
							 |-  ( b e. ( Moore ` X ) -> b C_ ~P X )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b C_ ~P X )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							sstrd | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ ~P X )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( b e. a -> |^| a C_ ~P X ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							exlimdv | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( E. b b e. a -> |^| a C_ ~P X ) )  | 
						
						
							| 26 | 
							
								16 25
							 | 
							biimtrid | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( a =/= (/) -> |^| a C_ ~P X ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3impia | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a C_ ~P X )  | 
						
						
							| 28 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> a C_ ( Moore ` X ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							sselda | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> b e. ( Moore ` X ) )  | 
						
						
							| 30 | 
							
								
							 | 
							mre1cl | 
							 |-  ( b e. ( Moore ` X ) -> X e. b )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> X e. b )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralrimiva | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> A. b e. a X e. b )  | 
						
						
							| 33 | 
							
								
							 | 
							elintg | 
							 |-  ( X e. V -> ( X e. |^| a <-> A. b e. a X e. b ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant1 | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> ( X e. |^| a <-> A. b e. a X e. b ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							mpbird | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> X e. |^| a )  | 
						
						
							| 36 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> a C_ ( Moore ` X ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							sselda | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> c e. ( Moore ` X ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ |^| a )  | 
						
						
							| 39 | 
							
								
							 | 
							intss1 | 
							 |-  ( c e. a -> |^| a C_ c )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| a C_ c )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							sstrd | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ c )  | 
						
						
							| 42 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b =/= (/) )  | 
						
						
							| 43 | 
							
								
							 | 
							mreintcl | 
							 |-  ( ( c e. ( Moore ` X ) /\ b C_ c /\ b =/= (/) ) -> |^| b e. c )  | 
						
						
							| 44 | 
							
								37 41 42 43
							 | 
							syl3anc | 
							 |-  ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| b e. c )  | 
						
						
							| 45 | 
							
								44
							 | 
							ralrimiva | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> A. c e. a |^| b e. c )  | 
						
						
							| 46 | 
							
								
							 | 
							intex | 
							 |-  ( b =/= (/) <-> |^| b e. _V )  | 
						
						
							| 47 | 
							
								
							 | 
							elintg | 
							 |-  ( |^| b e. _V -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							sylbi | 
							 |-  ( b =/= (/) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							3ad2ant3 | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) )  | 
						
						
							| 50 | 
							
								45 49
							 | 
							mpbird | 
							 |-  ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> |^| b e. |^| a )  | 
						
						
							| 51 | 
							
								27 35 50
							 | 
							ismred | 
							 |-  ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a e. ( Moore ` X ) )  | 
						
						
							| 52 | 
							
								5 15 51
							 | 
							ismred | 
							 |-  ( X e. V -> ( Moore ` X ) e. ( Moore ` ~P X ) )  |