Step |
Hyp |
Ref |
Expression |
1 |
|
rint0 |
|- ( S = (/) -> ( X i^i |^| S ) = X ) |
2 |
1
|
adantl |
|- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> ( X i^i |^| S ) = X ) |
3 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
4 |
3
|
ad2antrr |
|- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> X e. C ) |
5 |
2 4
|
eqeltrd |
|- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> ( X i^i |^| S ) e. C ) |
6 |
|
simp2 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S C_ C ) |
7 |
|
mresspw |
|- ( C e. ( Moore ` X ) -> C C_ ~P X ) |
8 |
7
|
3ad2ant1 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> C C_ ~P X ) |
9 |
6 8
|
sstrd |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S C_ ~P X ) |
10 |
|
simp3 |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S =/= (/) ) |
11 |
|
rintn0 |
|- ( ( S C_ ~P X /\ S =/= (/) ) -> ( X i^i |^| S ) = |^| S ) |
12 |
9 10 11
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> ( X i^i |^| S ) = |^| S ) |
13 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> |^| S e. C ) |
14 |
12 13
|
eqeltrd |
|- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> ( X i^i |^| S ) e. C ) |
15 |
14
|
3expa |
|- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S =/= (/) ) -> ( X i^i |^| S ) e. C ) |
16 |
5 15
|
pm2.61dane |
|- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> ( X i^i |^| S ) e. C ) |