Step |
Hyp |
Ref |
Expression |
1 |
|
fnmre |
|- Moore Fn _V |
2 |
|
fnunirn |
|- ( Moore Fn _V -> ( C e. U. ran Moore <-> E. x e. _V C e. ( Moore ` x ) ) ) |
3 |
1 2
|
ax-mp |
|- ( C e. U. ran Moore <-> E. x e. _V C e. ( Moore ` x ) ) |
4 |
|
mreuni |
|- ( C e. ( Moore ` x ) -> U. C = x ) |
5 |
4
|
fveq2d |
|- ( C e. ( Moore ` x ) -> ( Moore ` U. C ) = ( Moore ` x ) ) |
6 |
5
|
eleq2d |
|- ( C e. ( Moore ` x ) -> ( C e. ( Moore ` U. C ) <-> C e. ( Moore ` x ) ) ) |
7 |
6
|
ibir |
|- ( C e. ( Moore ` x ) -> C e. ( Moore ` U. C ) ) |
8 |
7
|
rexlimivw |
|- ( E. x e. _V C e. ( Moore ` x ) -> C e. ( Moore ` U. C ) ) |
9 |
3 8
|
sylbi |
|- ( C e. U. ran Moore -> C e. ( Moore ` U. C ) ) |
10 |
|
fvssunirn |
|- ( Moore ` U. C ) C_ U. ran Moore |
11 |
10
|
sseli |
|- ( C e. ( Moore ` U. C ) -> C e. U. ran Moore ) |
12 |
9 11
|
impbii |
|- ( C e. U. ran Moore <-> C e. ( Moore ` U. C ) ) |