Step |
Hyp |
Ref |
Expression |
1 |
|
mrieqvd.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
2 |
|
mrieqvd.2 |
|- N = ( mrCls ` A ) |
3 |
|
mrieqvd.3 |
|- I = ( mrInd ` A ) |
4 |
|
mrieqvd.4 |
|- ( ph -> S C_ X ) |
5 |
|
pssnel |
|- ( s C. S -> E. x ( x e. S /\ -. x e. s ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( ph /\ S e. I /\ s C. S ) -> E. x ( x e. S /\ -. x e. s ) ) |
7 |
1
|
3ad2ant1 |
|- ( ( ph /\ S e. I /\ s C. S ) -> A e. ( Moore ` X ) ) |
8 |
7
|
adantr |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> A e. ( Moore ` X ) ) |
9 |
|
simprr |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. s ) |
10 |
|
difsnb |
|- ( -. x e. s <-> ( s \ { x } ) = s ) |
11 |
9 10
|
sylib |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) = s ) |
12 |
|
simpl3 |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C. S ) |
13 |
12
|
pssssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ S ) |
14 |
13
|
ssdifd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) C_ ( S \ { x } ) ) |
15 |
11 14
|
eqsstrrd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ ( S \ { x } ) ) |
16 |
|
simpl2 |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S e. I ) |
17 |
3 8 16
|
mrissd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ X ) |
18 |
17
|
ssdifssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ X ) |
19 |
8 2 15 18
|
mrcssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C_ ( N ` ( S \ { x } ) ) ) |
20 |
|
difssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ S ) |
21 |
8 2 20 17
|
mrcssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C_ ( N ` S ) ) |
22 |
8 2 17
|
mrcssidd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ ( N ` S ) ) |
23 |
|
simprl |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. S ) |
24 |
22 23
|
sseldd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. ( N ` S ) ) |
25 |
2 3 8 16 23
|
ismri2dad |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
26 |
21 24 25
|
ssnelpssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
27 |
19 26
|
sspsstrd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C. ( N ` S ) ) |
28 |
6 27
|
exlimddv |
|- ( ( ph /\ S e. I /\ s C. S ) -> ( N ` s ) C. ( N ` S ) ) |
29 |
28
|
3expia |
|- ( ( ph /\ S e. I ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
30 |
29
|
alrimiv |
|- ( ( ph /\ S e. I ) -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
31 |
30
|
ex |
|- ( ph -> ( S e. I -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |
32 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. ( Moore ` X ) ) |
33 |
32
|
elfvexd |
|- ( ( ph /\ x e. S ) -> X e. _V ) |
34 |
4
|
adantr |
|- ( ( ph /\ x e. S ) -> S C_ X ) |
35 |
33 34
|
ssexd |
|- ( ( ph /\ x e. S ) -> S e. _V ) |
36 |
35
|
difexd |
|- ( ( ph /\ x e. S ) -> ( S \ { x } ) e. _V ) |
37 |
|
simp1r |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> x e. S ) |
38 |
|
difsnpss |
|- ( x e. S <-> ( S \ { x } ) C. S ) |
39 |
37 38
|
sylib |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( S \ { x } ) C. S ) |
40 |
|
simp2 |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s = ( S \ { x } ) ) |
41 |
40
|
psseq1d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S <-> ( S \ { x } ) C. S ) ) |
42 |
39 41
|
mpbird |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s C. S ) |
43 |
|
simp3 |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
44 |
42 43
|
mpd |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) C. ( N ` S ) ) |
45 |
40
|
fveq2d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) = ( N ` ( S \ { x } ) ) ) |
46 |
45
|
psseq1d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( ( N ` s ) C. ( N ` S ) <-> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
47 |
44 46
|
mpbid |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
48 |
47
|
3expia |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) ) -> ( ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
49 |
36 48
|
spcimdv |
|- ( ( ph /\ x e. S ) -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
50 |
49
|
3impia |
|- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
51 |
50
|
pssned |
|- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
52 |
51
|
3com23 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
53 |
1
|
3ad2ant1 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> A e. ( Moore ` X ) ) |
54 |
4
|
3ad2ant1 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> S C_ X ) |
55 |
|
simp3 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> x e. S ) |
56 |
53 2 54 55
|
mrieqvlemd |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) = ( N ` S ) ) ) |
57 |
56
|
necon3bbid |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |
58 |
52 57
|
mpbird |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
59 |
58
|
3expia |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( x e. S -> -. x e. ( N ` ( S \ { x } ) ) ) ) |
60 |
59
|
ralrimiv |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
61 |
60
|
ex |
|- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
62 |
2 3 1 4
|
ismri2d |
|- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
63 |
61 62
|
sylibrd |
|- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> S e. I ) ) |
64 |
31 63
|
impbid |
|- ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |