| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrieqvd.1 |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 2 |  | mrieqvd.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | mrieqvd.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | mrieqvd.4 |  |-  ( ph -> S C_ X ) | 
						
							| 5 | 2 3 1 4 | ismri2d |  |-  ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) | 
						
							| 6 | 1 | adantr |  |-  ( ( ph /\ x e. S ) -> A e. ( Moore ` X ) ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ x e. S ) -> S C_ X ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ x e. S ) -> x e. S ) | 
						
							| 9 | 6 2 7 8 | mrieqvlemd |  |-  ( ( ph /\ x e. S ) -> ( x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) = ( N ` S ) ) ) | 
						
							| 10 | 9 | necon3bbid |  |-  ( ( ph /\ x e. S ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) | 
						
							| 11 | 10 | ralbidva |  |-  ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) <-> A. x e. S ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) | 
						
							| 12 | 5 11 | bitrd |  |-  ( ph -> ( S e. I <-> A. x e. S ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |