Step |
Hyp |
Ref |
Expression |
1 |
|
mrissmrcd.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
2 |
|
mrissmrcd.2 |
|- N = ( mrCls ` A ) |
3 |
|
mrissmrcd.3 |
|- I = ( mrInd ` A ) |
4 |
|
mrissmrcd.4 |
|- ( ph -> S C_ ( N ` T ) ) |
5 |
|
mrissmrcd.5 |
|- ( ph -> T C_ S ) |
6 |
|
mrissmrcd.6 |
|- ( ph -> S e. I ) |
7 |
1 2 4 5
|
mressmrcd |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |
8 |
|
pssne |
|- ( ( N ` T ) C. ( N ` S ) -> ( N ` T ) =/= ( N ` S ) ) |
9 |
8
|
necomd |
|- ( ( N ` T ) C. ( N ` S ) -> ( N ` S ) =/= ( N ` T ) ) |
10 |
9
|
necon2bi |
|- ( ( N ` S ) = ( N ` T ) -> -. ( N ` T ) C. ( N ` S ) ) |
11 |
7 10
|
syl |
|- ( ph -> -. ( N ` T ) C. ( N ` S ) ) |
12 |
3 1 6
|
mrissd |
|- ( ph -> S C_ X ) |
13 |
1 2 3 12
|
mrieqv2d |
|- ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |
14 |
6 13
|
mpbid |
|- ( ph -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
15 |
6 5
|
ssexd |
|- ( ph -> T e. _V ) |
16 |
|
simpr |
|- ( ( ph /\ s = T ) -> s = T ) |
17 |
16
|
psseq1d |
|- ( ( ph /\ s = T ) -> ( s C. S <-> T C. S ) ) |
18 |
16
|
fveq2d |
|- ( ( ph /\ s = T ) -> ( N ` s ) = ( N ` T ) ) |
19 |
18
|
psseq1d |
|- ( ( ph /\ s = T ) -> ( ( N ` s ) C. ( N ` S ) <-> ( N ` T ) C. ( N ` S ) ) ) |
20 |
17 19
|
imbi12d |
|- ( ( ph /\ s = T ) -> ( ( s C. S -> ( N ` s ) C. ( N ` S ) ) <-> ( T C. S -> ( N ` T ) C. ( N ` S ) ) ) ) |
21 |
15 20
|
spcdv |
|- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( T C. S -> ( N ` T ) C. ( N ` S ) ) ) ) |
22 |
14 21
|
mpd |
|- ( ph -> ( T C. S -> ( N ` T ) C. ( N ` S ) ) ) |
23 |
11 22
|
mtod |
|- ( ph -> -. T C. S ) |
24 |
|
sspss |
|- ( T C_ S <-> ( T C. S \/ T = S ) ) |
25 |
5 24
|
sylib |
|- ( ph -> ( T C. S \/ T = S ) ) |
26 |
25
|
ord |
|- ( ph -> ( -. T C. S -> T = S ) ) |
27 |
23 26
|
mpd |
|- ( ph -> T = S ) |
28 |
27
|
eqcomd |
|- ( ph -> S = T ) |