Metamath Proof Explorer


Theorem mrissmrcd

Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd , and so are equal by mrieqv2d .) (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrcd.1
|- ( ph -> A e. ( Moore ` X ) )
mrissmrcd.2
|- N = ( mrCls ` A )
mrissmrcd.3
|- I = ( mrInd ` A )
mrissmrcd.4
|- ( ph -> S C_ ( N ` T ) )
mrissmrcd.5
|- ( ph -> T C_ S )
mrissmrcd.6
|- ( ph -> S e. I )
Assertion mrissmrcd
|- ( ph -> S = T )

Proof

Step Hyp Ref Expression
1 mrissmrcd.1
 |-  ( ph -> A e. ( Moore ` X ) )
2 mrissmrcd.2
 |-  N = ( mrCls ` A )
3 mrissmrcd.3
 |-  I = ( mrInd ` A )
4 mrissmrcd.4
 |-  ( ph -> S C_ ( N ` T ) )
5 mrissmrcd.5
 |-  ( ph -> T C_ S )
6 mrissmrcd.6
 |-  ( ph -> S e. I )
7 1 2 4 5 mressmrcd
 |-  ( ph -> ( N ` S ) = ( N ` T ) )
8 pssne
 |-  ( ( N ` T ) C. ( N ` S ) -> ( N ` T ) =/= ( N ` S ) )
9 8 necomd
 |-  ( ( N ` T ) C. ( N ` S ) -> ( N ` S ) =/= ( N ` T ) )
10 9 necon2bi
 |-  ( ( N ` S ) = ( N ` T ) -> -. ( N ` T ) C. ( N ` S ) )
11 7 10 syl
 |-  ( ph -> -. ( N ` T ) C. ( N ` S ) )
12 3 1 6 mrissd
 |-  ( ph -> S C_ X )
13 1 2 3 12 mrieqv2d
 |-  ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) )
14 6 13 mpbid
 |-  ( ph -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) )
15 6 5 ssexd
 |-  ( ph -> T e. _V )
16 simpr
 |-  ( ( ph /\ s = T ) -> s = T )
17 16 psseq1d
 |-  ( ( ph /\ s = T ) -> ( s C. S <-> T C. S ) )
18 16 fveq2d
 |-  ( ( ph /\ s = T ) -> ( N ` s ) = ( N ` T ) )
19 18 psseq1d
 |-  ( ( ph /\ s = T ) -> ( ( N ` s ) C. ( N ` S ) <-> ( N ` T ) C. ( N ` S ) ) )
20 17 19 imbi12d
 |-  ( ( ph /\ s = T ) -> ( ( s C. S -> ( N ` s ) C. ( N ` S ) ) <-> ( T C. S -> ( N ` T ) C. ( N ` S ) ) ) )
21 15 20 spcdv
 |-  ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( T C. S -> ( N ` T ) C. ( N ` S ) ) ) )
22 14 21 mpd
 |-  ( ph -> ( T C. S -> ( N ` T ) C. ( N ` S ) ) )
23 11 22 mtod
 |-  ( ph -> -. T C. S )
24 sspss
 |-  ( T C_ S <-> ( T C. S \/ T = S ) )
25 5 24 sylib
 |-  ( ph -> ( T C. S \/ T = S ) )
26 25 ord
 |-  ( ph -> ( -. T C. S -> T = S ) )
27 23 26 mpd
 |-  ( ph -> T = S )
28 27 eqcomd
 |-  ( ph -> S = T )