| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrissmrid.1 |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 2 |  | mrissmrid.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | mrissmrid.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | mrissmrid.4 |  |-  ( ph -> S e. I ) | 
						
							| 5 |  | mrissmrid.5 |  |-  ( ph -> T C_ S ) | 
						
							| 6 | 3 1 4 | mrissd |  |-  ( ph -> S C_ X ) | 
						
							| 7 | 5 6 | sstrd |  |-  ( ph -> T C_ X ) | 
						
							| 8 | 2 3 1 6 | ismri2d |  |-  ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) | 
						
							| 9 | 4 8 | mpbid |  |-  ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) | 
						
							| 10 | 5 | sseld |  |-  ( ph -> ( x e. T -> x e. S ) ) | 
						
							| 11 | 5 | ssdifd |  |-  ( ph -> ( T \ { x } ) C_ ( S \ { x } ) ) | 
						
							| 12 | 6 | ssdifssd |  |-  ( ph -> ( S \ { x } ) C_ X ) | 
						
							| 13 | 1 2 11 12 | mrcssd |  |-  ( ph -> ( N ` ( T \ { x } ) ) C_ ( N ` ( S \ { x } ) ) ) | 
						
							| 14 | 13 | ssneld |  |-  ( ph -> ( -. x e. ( N ` ( S \ { x } ) ) -> -. x e. ( N ` ( T \ { x } ) ) ) ) | 
						
							| 15 | 10 14 | imim12d |  |-  ( ph -> ( ( x e. S -> -. x e. ( N ` ( S \ { x } ) ) ) -> ( x e. T -> -. x e. ( N ` ( T \ { x } ) ) ) ) ) | 
						
							| 16 | 15 | ralimdv2 |  |-  ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) -> A. x e. T -. x e. ( N ` ( T \ { x } ) ) ) ) | 
						
							| 17 | 9 16 | mpd |  |-  ( ph -> A. x e. T -. x e. ( N ` ( T \ { x } ) ) ) | 
						
							| 18 | 2 3 1 7 17 | ismri2dd |  |-  ( ph -> T e. I ) |