| Step | Hyp | Ref | Expression | 
						
							| 1 |  | msdcn.x |  |-  X = ( Base ` M ) | 
						
							| 2 |  | msdcn.d |  |-  D = ( dist ` M ) | 
						
							| 3 |  | msdcn.j |  |-  J = ( TopOpen ` M ) | 
						
							| 4 |  | msdcn.2 |  |-  K = ( topGen ` ran (,) ) | 
						
							| 5 | 1 2 | msmet2 |  |-  ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) | 
						
							| 6 |  | eqid |  |-  ( MetOpen ` ( D |` ( X X. X ) ) ) = ( MetOpen ` ( D |` ( X X. X ) ) ) | 
						
							| 7 | 6 4 | metdcn2 |  |-  ( ( D |` ( X X. X ) ) e. ( Met ` X ) -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) | 
						
							| 9 | 2 | reseq1i |  |-  ( D |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) | 
						
							| 10 | 3 1 9 | mstopn |  |-  ( M e. MetSp -> J = ( MetOpen ` ( D |` ( X X. X ) ) ) ) | 
						
							| 11 | 10 10 | oveq12d |  |-  ( M e. MetSp -> ( J tX J ) = ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( M e. MetSp -> ( ( J tX J ) Cn K ) = ( ( ( MetOpen ` ( D |` ( X X. X ) ) ) tX ( MetOpen ` ( D |` ( X X. X ) ) ) ) Cn K ) ) | 
						
							| 13 | 8 12 | eleqtrrd |  |-  ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( ( J tX J ) Cn K ) ) |