Description: The distance function, suitably truncated, is a metric on X . (Contributed by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | msf.x | |- X = ( Base ` M ) |
|
msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
||
Assertion | msmet | |- ( M e. MetSp -> D e. ( Met ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msf.x | |- X = ( Base ` M ) |
|
2 | msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
|
3 | eqid | |- ( TopOpen ` M ) = ( TopOpen ` M ) |
|
4 | 3 1 2 | isms2 | |- ( M e. MetSp <-> ( D e. ( Met ` X ) /\ ( TopOpen ` M ) = ( MetOpen ` D ) ) ) |
5 | 4 | simplbi | |- ( M e. MetSp -> D e. ( Met ` X ) ) |