Metamath Proof Explorer


Theorem msq11i

Description: The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
Assertion msq11i
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 msq11
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) )
5 1 4 mpanl1
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) )