Metamath Proof Explorer


Theorem msqge0d

Description: A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1
|- ( ph -> A e. RR )
Assertion msqge0d
|- ( ph -> 0 <_ ( A x. A ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 msqge0
 |-  ( A e. RR -> 0 <_ ( A x. A ) )
3 1 2 syl
 |-  ( ph -> 0 <_ ( A x. A ) )