Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A e. RR -> A e. RR ) |
2 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
3 |
1 2
|
lttri2d |
|- ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
4 |
3
|
biimpa |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
5 |
|
mullt0 |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( A e. RR /\ A < 0 ) ) -> 0 < ( A x. A ) ) |
6 |
5
|
anidms |
|- ( ( A e. RR /\ A < 0 ) -> 0 < ( A x. A ) ) |
7 |
|
mulgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( A e. RR /\ 0 < A ) ) -> 0 < ( A x. A ) ) |
8 |
7
|
anidms |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A x. A ) ) |
9 |
6 8
|
jaodan |
|- ( ( A e. RR /\ ( A < 0 \/ 0 < A ) ) -> 0 < ( A x. A ) ) |
10 |
4 9
|
syldan |
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |