Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abscld.1 | |- ( ph -> A e. CC ) | |
| Assertion | msqsqrtd | |- ( ph -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abscld.1 | |- ( ph -> A e. CC ) | |
| 2 | 1 | sqrtcld | |- ( ph -> ( sqrt ` A ) e. CC ) | 
| 3 | 2 | sqvald | |- ( ph -> ( ( sqrt ` A ) ^ 2 ) = ( ( sqrt ` A ) x. ( sqrt ` A ) ) ) | 
| 4 | 1 | sqsqrtd | |- ( ph -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
| 5 | 3 4 | eqtr3d | |- ( ph -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) |