Metamath Proof Explorer


Theorem msqsqrtd

Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1
|- ( ph -> A e. CC )
Assertion msqsqrtd
|- ( ph -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 1 sqrtcld
 |-  ( ph -> ( sqrt ` A ) e. CC )
3 2 sqvald
 |-  ( ph -> ( ( sqrt ` A ) ^ 2 ) = ( ( sqrt ` A ) x. ( sqrt ` A ) ) )
4 1 sqsqrtd
 |-  ( ph -> ( ( sqrt ` A ) ^ 2 ) = A )
5 3 4 eqtr3d
 |-  ( ph -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A )