Metamath Proof Explorer


Theorem msqznn

Description: The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion msqznn
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( A x. A ) e. NN )

Proof

Step Hyp Ref Expression
1 zmulcl
 |-  ( ( A e. ZZ /\ A e. ZZ ) -> ( A x. A ) e. ZZ )
2 1 anidms
 |-  ( A e. ZZ -> ( A x. A ) e. ZZ )
3 2 adantr
 |-  ( ( A e. ZZ /\ A =/= 0 ) -> ( A x. A ) e. ZZ )
4 zre
 |-  ( A e. ZZ -> A e. RR )
5 msqgt0
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) )
6 4 5 sylan
 |-  ( ( A e. ZZ /\ A =/= 0 ) -> 0 < ( A x. A ) )
7 elnnz
 |-  ( ( A x. A ) e. NN <-> ( ( A x. A ) e. ZZ /\ 0 < ( A x. A ) ) )
8 3 6 7 sylanbrc
 |-  ( ( A e. ZZ /\ A =/= 0 ) -> ( A x. A ) e. NN )