Step |
Hyp |
Ref |
Expression |
1 |
|
mscl.x |
|- X = ( Base ` M ) |
2 |
|
mscl.d |
|- D = ( dist ` M ) |
3 |
1 2
|
msmet2 |
|- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) |
4 |
|
metrtri |
|- ( ( ( D |` ( X X. X ) ) e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A ( D |` ( X X. X ) ) C ) - ( B ( D |` ( X X. X ) ) C ) ) ) <_ ( A ( D |` ( X X. X ) ) B ) ) |
5 |
3 4
|
sylan |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A ( D |` ( X X. X ) ) C ) - ( B ( D |` ( X X. X ) ) C ) ) ) <_ ( A ( D |` ( X X. X ) ) B ) ) |
6 |
|
simpr1 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
7 |
|
simpr3 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
8 |
6 7
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) C ) = ( A D C ) ) |
9 |
|
simpr2 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
10 |
9 7
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B ( D |` ( X X. X ) ) C ) = ( B D C ) ) |
11 |
8 10
|
oveq12d |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( D |` ( X X. X ) ) C ) - ( B ( D |` ( X X. X ) ) C ) ) = ( ( A D C ) - ( B D C ) ) ) |
12 |
11
|
fveq2d |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A ( D |` ( X X. X ) ) C ) - ( B ( D |` ( X X. X ) ) C ) ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) |
13 |
6 9
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
14 |
5 12 13
|
3brtr3d |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A D C ) - ( B D C ) ) ) <_ ( A D B ) ) |