Description: The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isms.j | |- J = ( TopOpen ` K ) |
|
isms.x | |- X = ( Base ` K ) |
||
isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
||
Assertion | mstopn | |- ( K e. MetSp -> J = ( MetOpen ` D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | |- J = ( TopOpen ` K ) |
|
2 | isms.x | |- X = ( Base ` K ) |
|
3 | isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
|
4 | 1 2 3 | isms2 | |- ( K e. MetSp <-> ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) ) |
5 | 4 | simprbi | |- ( K e. MetSp -> J = ( MetOpen ` D ) ) |