Metamath Proof Explorer


Theorem mstps

Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion mstps
|- ( M e. MetSp -> M e. TopSp )

Proof

Step Hyp Ref Expression
1 msxms
 |-  ( M e. MetSp -> M e. *MetSp )
2 xmstps
 |-  ( M e. *MetSp -> M e. TopSp )
3 1 2 syl
 |-  ( M e. MetSp -> M e. TopSp )