| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mscl.x |
|- X = ( Base ` M ) |
| 2 |
|
mscl.d |
|- D = ( dist ` M ) |
| 3 |
1 2
|
msmet2 |
|- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) |
| 4 |
|
mettri |
|- ( ( ( D |` ( X X. X ) ) e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( A ( D |` ( X X. X ) ) C ) + ( C ( D |` ( X X. X ) ) B ) ) ) |
| 5 |
3 4
|
sylan |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( A ( D |` ( X X. X ) ) C ) + ( C ( D |` ( X X. X ) ) B ) ) ) |
| 6 |
|
simpr1 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
| 7 |
|
simpr2 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
| 8 |
6 7
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| 9 |
|
simpr3 |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
| 10 |
6 9
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) C ) = ( A D C ) ) |
| 11 |
9 7
|
ovresd |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( C ( D |` ( X X. X ) ) B ) = ( C D B ) ) |
| 12 |
10 11
|
oveq12d |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( D |` ( X X. X ) ) C ) + ( C ( D |` ( X X. X ) ) B ) ) = ( ( A D C ) + ( C D B ) ) ) |
| 13 |
5 8 12
|
3brtr3d |
|- ( ( M e. MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( C D B ) ) ) |