| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mscl.x |  |-  X = ( Base ` M ) | 
						
							| 2 |  | mscl.d |  |-  D = ( dist ` M ) | 
						
							| 3 | 1 2 | msmet2 |  |-  ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) | 
						
							| 4 |  | mettri2 |  |-  ( ( ( D |` ( X X. X ) ) e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( C ( D |` ( X X. X ) ) A ) + ( C ( D |` ( X X. X ) ) B ) ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( C ( D |` ( X X. X ) ) A ) + ( C ( D |` ( X X. X ) ) B ) ) ) | 
						
							| 6 |  | simpr2 |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> A e. X ) | 
						
							| 7 |  | simpr3 |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> B e. X ) | 
						
							| 8 | 6 7 | ovresd |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) | 
						
							| 9 |  | simpr1 |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> C e. X ) | 
						
							| 10 | 9 6 | ovresd |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C ( D |` ( X X. X ) ) A ) = ( C D A ) ) | 
						
							| 11 | 9 7 | ovresd |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C ( D |` ( X X. X ) ) B ) = ( C D B ) ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( ( C ( D |` ( X X. X ) ) A ) + ( C ( D |` ( X X. X ) ) B ) ) = ( ( C D A ) + ( C D B ) ) ) | 
						
							| 13 | 5 8 12 | 3brtr3d |  |-  ( ( M e. MetSp /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) |