Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mt2bi.1 | |- ph |
|
Assertion | mt2bi | |- ( -. ps <-> ( ps -> -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2bi.1 | |- ph |
|
2 | 1 | a1bi | |- ( -. ps <-> ( ph -> -. ps ) ) |
3 | con2b | |- ( ( ph -> -. ps ) <-> ( ps -> -. ph ) ) |
|
4 | 2 3 | bitri | |- ( -. ps <-> ( ps -> -. ph ) ) |