Metamath Proof Explorer


Theorem mt3

Description: A rule similar to modus tollens. Inference associated with con1i . (Contributed by NM, 18-May-1994) (Proof shortened by Wolf Lammen, 11-Sep-2013)

Ref Expression
Hypotheses mt3.1
|- -. ps
mt3.2
|- ( -. ph -> ps )
Assertion mt3
|- ph

Proof

Step Hyp Ref Expression
1 mt3.1
 |-  -. ps
2 mt3.2
 |-  ( -. ph -> ps )
3 1 2 mto
 |-  -. -. ph
4 3 notnotri
 |-  ph