Metamath Proof Explorer


Theorem mtbi

Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994) (Proof shortened by Wolf Lammen, 25-Oct-2012)

Ref Expression
Hypotheses mtbi.1
|- -. ph
mtbi.2
|- ( ph <-> ps )
Assertion mtbi
|- -. ps

Proof

Step Hyp Ref Expression
1 mtbi.1
 |-  -. ph
2 mtbi.2
 |-  ( ph <-> ps )
3 2 biimpri
 |-  ( ps -> ph )
4 1 3 mto
 |-  -. ps