Metamath Proof Explorer


Theorem mteqand

Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023)

Ref Expression
Hypotheses mteqand.1
|- ( ph -> C =/= D )
mteqand.2
|- ( ( ph /\ A = B ) -> C = D )
Assertion mteqand
|- ( ph -> A =/= B )

Proof

Step Hyp Ref Expression
1 mteqand.1
 |-  ( ph -> C =/= D )
2 mteqand.2
 |-  ( ( ph /\ A = B ) -> C = D )
3 1 neneqd
 |-  ( ph -> -. C = D )
4 3 2 mtand
 |-  ( ph -> -. A = B )
5 4 neqned
 |-  ( ph -> A =/= B )