Step |
Hyp |
Ref |
Expression |
1 |
|
mtest.z |
|- Z = ( ZZ>= ` N ) |
2 |
|
mtest.n |
|- ( ph -> N e. ZZ ) |
3 |
|
mtest.s |
|- ( ph -> S e. V ) |
4 |
|
mtest.f |
|- ( ph -> F : Z --> ( CC ^m S ) ) |
5 |
|
mtest.m |
|- ( ph -> M e. W ) |
6 |
|
mtest.c |
|- ( ( ph /\ k e. Z ) -> ( M ` k ) e. RR ) |
7 |
|
mtest.l |
|- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
8 |
|
mtest.d |
|- ( ph -> seq N ( + , M ) e. dom ~~> ) |
9 |
1
|
climcau |
|- ( ( N e. ZZ /\ seq N ( + , M ) e. dom ~~> ) -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) |
10 |
2 8 9
|
syl2anc |
|- ( ph -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) |
11 |
|
seqfn |
|- ( N e. ZZ -> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
12 |
2 11
|
syl |
|- ( ph -> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
13 |
1
|
fneq2i |
|- ( seq N ( oF + , F ) Fn Z <-> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
14 |
12 13
|
sylibr |
|- ( ph -> seq N ( oF + , F ) Fn Z ) |
15 |
3
|
elexd |
|- ( ph -> S e. _V ) |
16 |
15
|
adantr |
|- ( ( ph /\ i e. Z ) -> S e. _V ) |
17 |
|
simpr |
|- ( ( ph /\ i e. Z ) -> i e. Z ) |
18 |
17 1
|
eleqtrdi |
|- ( ( ph /\ i e. Z ) -> i e. ( ZZ>= ` N ) ) |
19 |
4
|
adantr |
|- ( ( ph /\ i e. Z ) -> F : Z --> ( CC ^m S ) ) |
20 |
|
elfzuz |
|- ( k e. ( N ... i ) -> k e. ( ZZ>= ` N ) ) |
21 |
20 1
|
eleqtrrdi |
|- ( k e. ( N ... i ) -> k e. Z ) |
22 |
|
ffvelrn |
|- ( ( F : Z --> ( CC ^m S ) /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) |
23 |
19 21 22
|
syl2an |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
24 |
|
elmapi |
|- ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) |
25 |
23 24
|
syl |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) : S --> CC ) |
26 |
25
|
feqmptd |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
27 |
21
|
adantl |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> k e. Z ) |
28 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
29 |
28
|
fveq1d |
|- ( n = k -> ( ( F ` n ) ` z ) = ( ( F ` k ) ` z ) ) |
30 |
|
eqid |
|- ( n e. Z |-> ( ( F ` n ) ` z ) ) = ( n e. Z |-> ( ( F ` n ) ` z ) ) |
31 |
|
fvex |
|- ( ( F ` k ) ` z ) e. _V |
32 |
29 30 31
|
fvmpt |
|- ( k e. Z -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
33 |
27 32
|
syl |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
34 |
33
|
mpteq2dv |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( z e. S |-> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
35 |
26 34
|
eqtr4d |
|- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) = ( z e. S |-> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) ) ) |
36 |
16 18 35
|
seqof |
|- ( ( ph /\ i e. Z ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
37 |
2
|
adantr |
|- ( ( ph /\ z e. S ) -> N e. ZZ ) |
38 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( CC ^m S ) ) |
39 |
|
elmapi |
|- ( ( F ` n ) e. ( CC ^m S ) -> ( F ` n ) : S --> CC ) |
40 |
38 39
|
syl |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : S --> CC ) |
41 |
40
|
ffvelrnda |
|- ( ( ( ph /\ n e. Z ) /\ z e. S ) -> ( ( F ` n ) ` z ) e. CC ) |
42 |
41
|
an32s |
|- ( ( ( ph /\ z e. S ) /\ n e. Z ) -> ( ( F ` n ) ` z ) e. CC ) |
43 |
42
|
fmpttd |
|- ( ( ph /\ z e. S ) -> ( n e. Z |-> ( ( F ` n ) ` z ) ) : Z --> CC ) |
44 |
43
|
ffvelrnda |
|- ( ( ( ph /\ z e. S ) /\ i e. Z ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` i ) e. CC ) |
45 |
1 37 44
|
serf |
|- ( ( ph /\ z e. S ) -> seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) : Z --> CC ) |
46 |
45
|
ffvelrnda |
|- ( ( ( ph /\ z e. S ) /\ i e. Z ) -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. CC ) |
47 |
46
|
an32s |
|- ( ( ( ph /\ i e. Z ) /\ z e. S ) -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. CC ) |
48 |
47
|
fmpttd |
|- ( ( ph /\ i e. Z ) -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) |
49 |
|
cnex |
|- CC e. _V |
50 |
|
elmapg |
|- ( ( CC e. _V /\ S e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) <-> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) ) |
51 |
49 16 50
|
sylancr |
|- ( ( ph /\ i e. Z ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) <-> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) ) |
52 |
48 51
|
mpbird |
|- ( ( ph /\ i e. Z ) -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) ) |
53 |
36 52
|
eqeltrd |
|- ( ( ph /\ i e. Z ) -> ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
54 |
53
|
ralrimiva |
|- ( ph -> A. i e. Z ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
55 |
|
ffnfv |
|- ( seq N ( oF + , F ) : Z --> ( CC ^m S ) <-> ( seq N ( oF + , F ) Fn Z /\ A. i e. Z ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) ) |
56 |
14 54 55
|
sylanbrc |
|- ( ph -> seq N ( oF + , F ) : Z --> ( CC ^m S ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> seq N ( oF + , F ) : Z --> ( CC ^m S ) ) |
58 |
1
|
uztrn2 |
|- ( ( j e. Z /\ i e. ( ZZ>= ` j ) ) -> i e. Z ) |
59 |
58
|
adantl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. Z ) |
60 |
57 59
|
ffvelrnd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
61 |
|
elmapi |
|- ( ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) -> ( seq N ( oF + , F ) ` i ) : S --> CC ) |
62 |
60 61
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) : S --> CC ) |
63 |
62
|
ffvelrnda |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) e. CC ) |
64 |
|
simprl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. Z ) |
65 |
57 64
|
ffvelrnd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) e. ( CC ^m S ) ) |
66 |
|
elmapi |
|- ( ( seq N ( oF + , F ) ` j ) e. ( CC ^m S ) -> ( seq N ( oF + , F ) ` j ) : S --> CC ) |
67 |
65 66
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) : S --> CC ) |
68 |
67
|
ffvelrnda |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) e. CC ) |
69 |
63 68
|
subcld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) e. CC ) |
70 |
69
|
abscld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) e. RR ) |
71 |
|
fzfid |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( j + 1 ) ... i ) e. Fin ) |
72 |
|
ssun2 |
|- ( ( j + 1 ) ... i ) C_ ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) |
73 |
64 1
|
eleqtrdi |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. ( ZZ>= ` N ) ) |
74 |
|
simprr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. ( ZZ>= ` j ) ) |
75 |
|
elfzuzb |
|- ( j e. ( N ... i ) <-> ( j e. ( ZZ>= ` N ) /\ i e. ( ZZ>= ` j ) ) ) |
76 |
73 74 75
|
sylanbrc |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. ( N ... i ) ) |
77 |
|
fzsplit |
|- ( j e. ( N ... i ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
78 |
76 77
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
79 |
72 78
|
sseqtrrid |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( j + 1 ) ... i ) C_ ( N ... i ) ) |
80 |
79
|
sselda |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. ( N ... i ) ) |
81 |
80
|
adantlr |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. ( N ... i ) ) |
82 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> F : Z --> ( CC ^m S ) ) |
83 |
82 21 22
|
syl2an |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
84 |
83 24
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( F ` k ) : S --> CC ) |
85 |
84
|
ffvelrnda |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
86 |
85
|
an32s |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> ( ( F ` k ) ` z ) e. CC ) |
87 |
81 86
|
syldan |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( ( F ` k ) ` z ) e. CC ) |
88 |
87
|
abscld |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( abs ` ( ( F ` k ) ` z ) ) e. RR ) |
89 |
71 88
|
fsumrecl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) e. RR ) |
90 |
1 2 6
|
serfre |
|- ( ph -> seq N ( + , M ) : Z --> RR ) |
91 |
90
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> seq N ( + , M ) : Z --> RR ) |
92 |
91 59
|
ffvelrnd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( + , M ) ` i ) e. RR ) |
93 |
91 64
|
ffvelrnd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( + , M ) ` j ) e. RR ) |
94 |
92 93
|
resubcld |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) e. RR ) |
95 |
94
|
recnd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) e. CC ) |
96 |
95
|
abscld |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR ) |
97 |
96
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR ) |
98 |
58 36
|
sylan2 |
|- ( ( ph /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
99 |
98
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
100 |
99
|
fveq1d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) = ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) ) |
101 |
|
fvex |
|- ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. _V |
102 |
|
eqid |
|- ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
103 |
102
|
fvmpt2 |
|- ( ( z e. S /\ ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
104 |
101 103
|
mpan2 |
|- ( z e. S -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
105 |
100 104
|
sylan9eq |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
106 |
|
fveq2 |
|- ( i = j -> ( seq N ( oF + , F ) ` i ) = ( seq N ( oF + , F ) ` j ) ) |
107 |
|
fveq2 |
|- ( i = j -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
108 |
107
|
mpteq2dv |
|- ( i = j -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
109 |
106 108
|
eqeq12d |
|- ( i = j -> ( ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) <-> ( seq N ( oF + , F ) ` j ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) ) |
110 |
36
|
ralrimiva |
|- ( ph -> A. i e. Z ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
111 |
110
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> A. i e. Z ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
112 |
109 111 64
|
rspcdva |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
113 |
112
|
fveq1d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) = ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) ) |
114 |
|
fvex |
|- ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) e. _V |
115 |
|
eqid |
|- ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
116 |
115
|
fvmpt2 |
|- ( ( z e. S /\ ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
117 |
114 116
|
mpan2 |
|- ( z e. S -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
118 |
113 117
|
sylan9eq |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
119 |
105 118
|
oveq12d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) = ( ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) - ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
120 |
21
|
adantl |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> k e. Z ) |
121 |
120 32
|
syl |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
122 |
59
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> i e. Z ) |
123 |
122 1
|
eleqtrdi |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> i e. ( ZZ>= ` N ) ) |
124 |
121 123 86
|
fsumser |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
125 |
|
elfzuz |
|- ( k e. ( N ... j ) -> k e. ( ZZ>= ` N ) ) |
126 |
125 1
|
eleqtrrdi |
|- ( k e. ( N ... j ) -> k e. Z ) |
127 |
126
|
adantl |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> k e. Z ) |
128 |
127 32
|
syl |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
129 |
64
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> j e. Z ) |
130 |
129 1
|
eleqtrdi |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> j e. ( ZZ>= ` N ) ) |
131 |
82 126 22
|
syl2an |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
132 |
131 24
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) : S --> CC ) |
133 |
132
|
ffvelrnda |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
134 |
133
|
an32s |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> ( ( F ` k ) ` z ) e. CC ) |
135 |
128 130 134
|
fsumser |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
136 |
124 135
|
oveq12d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) - sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) ) = ( ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) - ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
137 |
|
fzfid |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... j ) e. Fin ) |
138 |
137 134
|
fsumcl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) e. CC ) |
139 |
71 87
|
fsumcl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) e. CC ) |
140 |
|
eluzelre |
|- ( j e. ( ZZ>= ` N ) -> j e. RR ) |
141 |
73 140
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. RR ) |
142 |
141
|
ltp1d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j < ( j + 1 ) ) |
143 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
144 |
142 143
|
syl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
145 |
144
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
146 |
78
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
147 |
|
fzfid |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... i ) e. Fin ) |
148 |
145 146 147 86
|
fsumsplit |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) = ( sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) + sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) ) |
149 |
138 139 148
|
mvrladdd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) - sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) |
150 |
119 136 149
|
3eqtr2d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) |
151 |
150
|
fveq2d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) ) |
152 |
71 87
|
fsumabs |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) ) |
153 |
151 152
|
eqbrtrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) ) |
154 |
|
simpll |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ph ) |
155 |
154 21 6
|
syl2an |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) e. RR ) |
156 |
80 155
|
syldan |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. RR ) |
157 |
156
|
adantlr |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. RR ) |
158 |
81 21
|
syl |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. Z ) |
159 |
7
|
ad4ant14 |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ ( k e. Z /\ z e. S ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
160 |
159
|
anass1rs |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. Z ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
161 |
158 160
|
syldan |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
162 |
71 88 157 161
|
fsumle |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
163 |
|
eqidd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) = ( M ` k ) ) |
164 |
59 1
|
eleqtrdi |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. ( ZZ>= ` N ) ) |
165 |
155
|
recnd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) e. CC ) |
166 |
163 164 165
|
fsumser |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... i ) ( M ` k ) = ( seq N ( + , M ) ` i ) ) |
167 |
|
eqidd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) = ( M ` k ) ) |
168 |
154 126 6
|
syl2an |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) e. RR ) |
169 |
168
|
recnd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) e. CC ) |
170 |
167 73 169
|
fsumser |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... j ) ( M ` k ) = ( seq N ( + , M ) ` j ) ) |
171 |
166 170
|
oveq12d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( N ... i ) ( M ` k ) - sum_ k e. ( N ... j ) ( M ` k ) ) = ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) |
172 |
|
fzfid |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... j ) e. Fin ) |
173 |
172 169
|
fsumcl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... j ) ( M ` k ) e. CC ) |
174 |
|
fzfid |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( j + 1 ) ... i ) e. Fin ) |
175 |
80 165
|
syldan |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. CC ) |
176 |
174 175
|
fsumcl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. CC ) |
177 |
|
fzfid |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... i ) e. Fin ) |
178 |
144 78 177 165
|
fsumsplit |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... i ) ( M ` k ) = ( sum_ k e. ( N ... j ) ( M ` k ) + sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
179 |
173 176 178
|
mvrladdd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( N ... i ) ( M ` k ) - sum_ k e. ( N ... j ) ( M ` k ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
180 |
171 179
|
eqtr3d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
181 |
180
|
fveq2d |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
182 |
181
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
183 |
180 94
|
eqeltrrd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. RR ) |
184 |
183
|
adantr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. RR ) |
185 |
|
0red |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 e. RR ) |
186 |
87
|
absge0d |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 <_ ( abs ` ( ( F ` k ) ` z ) ) ) |
187 |
185 88 157 186 161
|
letrd |
|- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 <_ ( M ` k ) ) |
188 |
71 157 187
|
fsumge0 |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> 0 <_ sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
189 |
184 188
|
absidd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
190 |
182 189
|
eqtrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
191 |
162 190
|
breqtrrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) ) |
192 |
70 89 97 153 191
|
letrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) ) |
193 |
|
simpllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> r e. RR+ ) |
194 |
193
|
rpred |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> r e. RR ) |
195 |
|
lelttr |
|- ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) e. RR /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR /\ r e. RR ) -> ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
196 |
70 97 194 195
|
syl3anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
197 |
192 196
|
mpand |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
198 |
197
|
ralrimdva |
|- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
199 |
198
|
anassrs |
|- ( ( ( ( ph /\ r e. RR+ ) /\ j e. Z ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
200 |
199
|
ralimdva |
|- ( ( ( ph /\ r e. RR+ ) /\ j e. Z ) -> ( A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
201 |
200
|
reximdva |
|- ( ( ph /\ r e. RR+ ) -> ( E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
202 |
201
|
ralimdva |
|- ( ph -> ( A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
203 |
10 202
|
mpd |
|- ( ph -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) |
204 |
1 2 3 56
|
ulmcau |
|- ( ph -> ( seq N ( oF + , F ) e. dom ( ~~>u ` S ) <-> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
205 |
203 204
|
mpbird |
|- ( ph -> seq N ( oF + , F ) e. dom ( ~~>u ` S ) ) |