Metamath Proof Explorer


Theorem mtord

Description: A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009)

Ref Expression
Hypotheses mtord.1
|- ( ph -> -. ch )
mtord.2
|- ( ph -> -. th )
mtord.3
|- ( ph -> ( ps -> ( ch \/ th ) ) )
Assertion mtord
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 mtord.1
 |-  ( ph -> -. ch )
2 mtord.2
 |-  ( ph -> -. th )
3 mtord.3
 |-  ( ph -> ( ps -> ( ch \/ th ) ) )
4 pm2.53
 |-  ( ( ch \/ th ) -> ( -. ch -> th ) )
5 3 1 4 syl6ci
 |-  ( ph -> ( ps -> th ) )
6 2 5 mtod
 |-  ( ph -> -. ps )