| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 4 |
|
ax-icn |
|- _i e. CC |
| 5 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 6 |
|
mulcl |
|- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
| 7 |
4 5 6
|
sylancr |
|- ( y e. RR -> ( _i x. y ) e. CC ) |
| 8 |
|
adddi |
|- ( ( 0 e. CC /\ x e. CC /\ ( _i x. y ) e. CC ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) ) |
| 9 |
2 3 7 8
|
mp3an3an |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) ) |
| 10 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 11 |
|
mul12 |
|- ( ( 0 e. CC /\ _i e. CC /\ y e. CC ) -> ( 0 x. ( _i x. y ) ) = ( _i x. ( 0 x. y ) ) ) |
| 12 |
2 4 5 11
|
mp3an12i |
|- ( y e. RR -> ( 0 x. ( _i x. y ) ) = ( _i x. ( 0 x. y ) ) ) |
| 13 |
|
mul02lem2 |
|- ( y e. RR -> ( 0 x. y ) = 0 ) |
| 14 |
13
|
oveq2d |
|- ( y e. RR -> ( _i x. ( 0 x. y ) ) = ( _i x. 0 ) ) |
| 15 |
12 14
|
eqtrd |
|- ( y e. RR -> ( 0 x. ( _i x. y ) ) = ( _i x. 0 ) ) |
| 16 |
10 15
|
oveqan12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 0 x. x ) + ( 0 x. ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 17 |
9 16
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 18 |
|
cnre |
|- ( 0 e. CC -> E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) ) |
| 19 |
2 18
|
ax-mp |
|- E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) |
| 20 |
|
oveq2 |
|- ( 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 x. ( x + ( _i x. y ) ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( 0 = ( x + ( _i x. y ) ) -> ( ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) <-> ( 0 x. ( x + ( _i x. y ) ) ) = ( 0 + ( _i x. 0 ) ) ) ) |
| 22 |
17 21
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) ) ) |
| 23 |
22
|
rexlimivv |
|- ( E. x e. RR E. y e. RR 0 = ( x + ( _i x. y ) ) -> ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) ) |
| 24 |
19 23
|
ax-mp |
|- ( 0 x. 0 ) = ( 0 + ( _i x. 0 ) ) |
| 25 |
|
0re |
|- 0 e. RR |
| 26 |
|
mul02lem2 |
|- ( 0 e. RR -> ( 0 x. 0 ) = 0 ) |
| 27 |
25 26
|
ax-mp |
|- ( 0 x. 0 ) = 0 |
| 28 |
24 27
|
eqtr3i |
|- ( 0 + ( _i x. 0 ) ) = 0 |
| 29 |
17 28
|
eqtrdi |
|- ( ( x e. RR /\ y e. RR ) -> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) |
| 30 |
|
oveq2 |
|- ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = ( 0 x. ( x + ( _i x. y ) ) ) ) |
| 31 |
30
|
eqeq1d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( 0 x. A ) = 0 <-> ( 0 x. ( x + ( _i x. y ) ) ) = 0 ) ) |
| 32 |
29 31
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) ) |
| 33 |
32
|
rexlimivv |
|- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( 0 x. A ) = 0 ) |
| 34 |
1 33
|
syl |
|- ( A e. CC -> ( 0 x. A ) = 0 ) |