| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
mul02lem1 |
|- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ 1 e. CC ) -> 1 = ( 1 + 1 ) ) |
| 4 |
2 3
|
mpan2 |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> 1 = ( 1 + 1 ) ) |
| 5 |
4
|
eqcomd |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( 1 + 1 ) = 1 ) |
| 6 |
5
|
oveq2d |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( ( _i x. _i ) + ( 1 + 1 ) ) = ( ( _i x. _i ) + 1 ) ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
7 7
|
mulcli |
|- ( _i x. _i ) e. CC |
| 9 |
8 2 2
|
addassi |
|- ( ( ( _i x. _i ) + 1 ) + 1 ) = ( ( _i x. _i ) + ( 1 + 1 ) ) |
| 10 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
| 11 |
10
|
oveq1i |
|- ( ( ( _i x. _i ) + 1 ) + 1 ) = ( 0 + 1 ) |
| 12 |
9 11
|
eqtr3i |
|- ( ( _i x. _i ) + ( 1 + 1 ) ) = ( 0 + 1 ) |
| 13 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 14 |
10 13
|
eqtr4i |
|- ( ( _i x. _i ) + 1 ) = ( 0 + 0 ) |
| 15 |
6 12 14
|
3eqtr3g |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> ( 0 + 1 ) = ( 0 + 0 ) ) |
| 16 |
|
1re |
|- 1 e. RR |
| 17 |
|
0re |
|- 0 e. RR |
| 18 |
|
readdcan |
|- ( ( 1 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) ) |
| 19 |
16 17 17 18
|
mp3an |
|- ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) |
| 20 |
15 19
|
sylib |
|- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> 1 = 0 ) |
| 21 |
20
|
ex |
|- ( A e. RR -> ( ( 0 x. A ) =/= 0 -> 1 = 0 ) ) |
| 22 |
21
|
necon1d |
|- ( A e. RR -> ( 1 =/= 0 -> ( 0 x. A ) = 0 ) ) |
| 23 |
1 22
|
mpi |
|- ( A e. RR -> ( 0 x. A ) = 0 ) |