Description: If a product is zero, one of its factors must be zero. Theorem I.11 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msq0d.1 | |- ( ph -> A e. CC ) | |
| mul0ord.2 | |- ( ph -> B e. CC ) | ||
| Assertion | mul0ord | |- ( ph -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | msq0d.1 | |- ( ph -> A e. CC ) | |
| 2 | mul0ord.2 | |- ( ph -> B e. CC ) | |
| 3 | mul0or | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) ) | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) ) |