Metamath Proof Explorer


Theorem mul0ori

Description: If a product is zero, one of its factors must be zero. Theorem I.11 of Apostol p. 18. (Contributed by NM, 7-Oct-1999)

Ref Expression
Hypotheses mul0or.1
|- A e. CC
mul0or.2
|- B e. CC
Assertion mul0ori
|- ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) )

Proof

Step Hyp Ref Expression
1 mul0or.1
 |-  A e. CC
2 mul0or.2
 |-  B e. CC
3 mul0or
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) )
4 1 2 3 mp2an
 |-  ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) )