Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muld.1 | |- ( ph -> A e. CC ) |
|
| addcomd.2 | |- ( ph -> B e. CC ) |
||
| addcand.3 | |- ( ph -> C e. CC ) |
||
| Assertion | mul12d | |- ( ph -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | |- ( ph -> A e. CC ) |
|
| 2 | addcomd.2 | |- ( ph -> B e. CC ) |
|
| 3 | addcand.3 | |- ( ph -> C e. CC ) |
|
| 4 | mul12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) ) |