Metamath Proof Explorer


Theorem mul12i

Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses mul.1
|- A e. CC
mul.2
|- B e. CC
mul.3
|- C e. CC
Assertion mul12i
|- ( A x. ( B x. C ) ) = ( B x. ( A x. C ) )

Proof

Step Hyp Ref Expression
1 mul.1
 |-  A e. CC
2 mul.2
 |-  B e. CC
3 mul.3
 |-  C e. CC
4 mul12
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( B x. ( A x. C ) ) )
5 1 2 3 4 mp3an
 |-  ( A x. ( B x. C ) ) = ( B x. ( A x. C ) )