Metamath Proof Explorer


Theorem mul2lt0lgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Hypotheses mul2lt0.1
|- ( ph -> A e. RR )
mul2lt0.2
|- ( ph -> B e. RR )
mul2lt0.3
|- ( ph -> ( A x. B ) < 0 )
Assertion mul2lt0lgt0
|- ( ( ph /\ 0 < A ) -> B < 0 )

Proof

Step Hyp Ref Expression
1 mul2lt0.1
 |-  ( ph -> A e. RR )
2 mul2lt0.2
 |-  ( ph -> B e. RR )
3 mul2lt0.3
 |-  ( ph -> ( A x. B ) < 0 )
4 1 recnd
 |-  ( ph -> A e. CC )
5 2 recnd
 |-  ( ph -> B e. CC )
6 4 5 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
7 6 3 eqbrtrrd
 |-  ( ph -> ( B x. A ) < 0 )
8 2 1 7 mul2lt0rgt0
 |-  ( ( ph /\ 0 < A ) -> B < 0 )