Step |
Hyp |
Ref |
Expression |
1 |
|
mul2lt0.1 |
|- ( ph -> A e. RR ) |
2 |
|
mul2lt0.2 |
|- ( ph -> B e. RR ) |
3 |
|
mul2lt0.3 |
|- ( ph -> ( A x. B ) < 0 ) |
4 |
3
|
adantr |
|- ( ( ph /\ 0 < B ) -> ( A x. B ) < 0 ) |
5 |
2
|
adantr |
|- ( ( ph /\ 0 < B ) -> B e. RR ) |
6 |
5
|
recnd |
|- ( ( ph /\ 0 < B ) -> B e. CC ) |
7 |
6
|
mul02d |
|- ( ( ph /\ 0 < B ) -> ( 0 x. B ) = 0 ) |
8 |
4 7
|
breqtrrd |
|- ( ( ph /\ 0 < B ) -> ( A x. B ) < ( 0 x. B ) ) |
9 |
1
|
adantr |
|- ( ( ph /\ 0 < B ) -> A e. RR ) |
10 |
|
0red |
|- ( ( ph /\ 0 < B ) -> 0 e. RR ) |
11 |
|
simpr |
|- ( ( ph /\ 0 < B ) -> 0 < B ) |
12 |
5 11
|
elrpd |
|- ( ( ph /\ 0 < B ) -> B e. RR+ ) |
13 |
9 10 12
|
ltmul1d |
|- ( ( ph /\ 0 < B ) -> ( A < 0 <-> ( A x. B ) < ( 0 x. B ) ) ) |
14 |
8 13
|
mpbird |
|- ( ( ph /\ 0 < B ) -> A < 0 ) |