Metamath Proof Explorer


Theorem mul2lt0rgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1
|- ( ph -> A e. RR )
mul2lt0.2
|- ( ph -> B e. RR )
mul2lt0.3
|- ( ph -> ( A x. B ) < 0 )
Assertion mul2lt0rgt0
|- ( ( ph /\ 0 < B ) -> A < 0 )

Proof

Step Hyp Ref Expression
1 mul2lt0.1
 |-  ( ph -> A e. RR )
2 mul2lt0.2
 |-  ( ph -> B e. RR )
3 mul2lt0.3
 |-  ( ph -> ( A x. B ) < 0 )
4 3 adantr
 |-  ( ( ph /\ 0 < B ) -> ( A x. B ) < 0 )
5 2 adantr
 |-  ( ( ph /\ 0 < B ) -> B e. RR )
6 5 recnd
 |-  ( ( ph /\ 0 < B ) -> B e. CC )
7 6 mul02d
 |-  ( ( ph /\ 0 < B ) -> ( 0 x. B ) = 0 )
8 4 7 breqtrrd
 |-  ( ( ph /\ 0 < B ) -> ( A x. B ) < ( 0 x. B ) )
9 1 adantr
 |-  ( ( ph /\ 0 < B ) -> A e. RR )
10 0red
 |-  ( ( ph /\ 0 < B ) -> 0 e. RR )
11 simpr
 |-  ( ( ph /\ 0 < B ) -> 0 < B )
12 5 11 elrpd
 |-  ( ( ph /\ 0 < B ) -> B e. RR+ )
13 9 10 12 ltmul1d
 |-  ( ( ph /\ 0 < B ) -> ( A < 0 <-> ( A x. B ) < ( 0 x. B ) ) )
14 8 13 mpbird
 |-  ( ( ph /\ 0 < B ) -> A < 0 )